64 research outputs found

    Plasma contactors for use with electodynamic tethers for power generation

    Get PDF
    Plasma contactors are proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. The plasma contactor emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors. The central question addressed is whether the electrons collected by a plasma contactor come from the far field or by ionization of local neutral gas. This question is important because the system implications are different for the two mechanisms. It is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory for the outer regions of the cloud is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1 to 100 Amperes. It is suggested that the major source of collected electrons comes by ionization of neutral gas while collection of electrons from the far field is relatively small

    Do physician outcome judgments and judgment biases contribute to inappropriate use of treatments? Study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are many examples of physicians using treatments inappropriately, despite clear evidence about the circumstances under which the benefits of such treatments outweigh their harms. When such over- or under- use of treatments occurs for common diseases, the burden to the healthcare system and risks to patients can be substantial. We propose that a major contributor to inappropriate treatment may be how clinicians judge the likelihood of important treatment outcomes, and how these judgments influence their treatment decisions. The current study will examine the role of judged outcome probabilities and other cognitive factors in the context of two clinical treatment decisions: 1) prescription of antibiotics for sore throat, where we hypothesize overestimation of benefit and underestimation of harm leads to over-prescription of antibiotics; and 2) initiation of anticoagulation for patients with atrial fibrillation (AF), where we hypothesize that underestimation of benefit and overestimation of harm leads to under-prescription of warfarin.</p> <p>Methods</p> <p>For each of the two conditions, we will administer surveys of two types (Type 1 and Type 2) to different samples of Canadian physicians. The primary goal of the Type 1 survey is to assess physicians' perceived outcome probabilities (both good and bad outcomes) for the target treatment. Type 1 surveys will assess judged outcome probabilities in the context of a representative patient, and include questions about how physicians currently treat such cases, the recollection of rare or vivid outcomes, as well as practice and demographic details. The primary goal of the Type 2 surveys is to measure the specific factors that drive individual clinical judgments and treatment decisions, using a 'clinical judgment analysis' or 'lens modeling' approach. This survey will manipulate eight clinical variables across a series of sixteen realistic case vignettes. Based on the survey responses, we will be able to identify which variables have the greatest effect on physician judgments, and whether judgments are affected by inappropriate cues or incorrect weighting of appropriate cues. We will send antibiotics surveys to family physicians (300 per survey), and warfarin surveys to both family physicians and internal medicine specialists (300 per group per survey), for a total of 1,800 physicians. Each Type 1 survey will be two to four pages in length and take about fifteen minutes to complete, while each Type 2 survey will be eight to ten pages in length and take about thirty minutes to complete.</p> <p>Discussion</p> <p>This work will provide insight into the extent to which clinicians' judgments about the likelihood of important treatment outcomes explain inappropriate treatment decisions. This work will also provide information necessary for the development of an individualized feedback tool designed to improve treatment decisions. The techniques developed here have the potential to be applicable to a wide range of clinical areas where inappropriate utilization stems from biased judgments.</p

    Detecting neuroimaging biomarkers for schizophrenia:a meta-analysis of multivariate pattern recognition studies

    Get PDF
    Multivariate pattern recognition approaches have recently facilitated the search for reliable neuroimaging-based biomarkers in psychiatric disorders such as schizophrenia. By taking into account the multivariate nature of brain functional and structural changes as well as their distributed localization across the whole brain, they overcome drawbacks of traditional univariate approaches. To evaluate the overall reliability of neuroimaging-based biomarkers, we conducted a comprehensive literature search to identify all studies that used multivariate pattern recognition to identify patterns of brain alterations that differentiate patients with schizophrenia from healthy controls. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across studies as well as to assess the robustness to potentially confounding variables. In the total sample of n=38 studies (1602 patients and 1637 healthy controls), patients were differentiated from controls with a sensitivity of 80.3% (95% CI: 76.7–83.5%) and a specificity of 80.3% (95% CI: 76.9–83.3%). Analysis of neuroimaging modality indicated higher sensitivity (84.46%, 95% CI: 79.9–88.2%) and similar specificity (76.9%, 95% CI: 71.3–81.6%) of rsfMRI studies as compared with structural MRI studies (sensitivity: 76.4%, 95% CI: 71.9–80.4%, specificity of 79.0%, 95% CI: 74.6–82.8%). Moderator analysis identified significant effects of age (p=0.029), imaging modality (p=0.019), and disease stage (p=0.025) on sensitivity as well as of positive-to-negative symptom ratio (p=0.022) and antipsychotic medication (p=0.016) on specificity. Our results underline the utility of multivariate pattern recognition approaches for the identification of reliable neuroimaging-based biomarkers. Despite the clinical heterogeneity of the schizophrenia phenotype, brain functional and structural alterations differentiate schizophrenic patients from healthy controls with 80% sensitivity and specificity

    Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI

    Get PDF
    A growing number of artificial intelligence (AI)-based clinical decision support systems are showing promising performance in preclinical, in silico, evaluation, but few have yet demonstrated real benefit to patient care. Early stage clinical evaluation is important to assess an AI system’s actual clinical performance at small scale, ensure its safety, evaluate the human factors surrounding its use, and pave the way to further large scale trials. However, the reporting of these early studies remains inadequate. The present statement provides a multistakeholder, consensus-based reporting guideline for the Developmental and Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intelligence (DECIDE-AI). We conducted a two round, modified Delphi process to collect and analyse expert opinion on the reporting of early clinical evaluation of AI systems. Experts were recruited from 20 predefined stakeholder categories. The final composition and wording of the guideline was determined at a virtual consensus meeting. The checklist and the Explanation & Elaboration (E&E) sections were refined based on feedback from a qualitative evaluation process. 123 experts participated in the first round of Delphi, 138 in the second, 16 in the consensus meeting, and 16 in the qualitative evaluation. The DECIDE-AI reporting guideline comprises 17 AI specific reporting items (made of 28 subitems) and 10 generic reporting items, with an E&E paragraph provided for each. Through consultation and consensus with a range of stakeholders, we have developed a guideline comprising key items that should be reported in early stage clinical studies of AI-based decision support systems in healthcare. By providing an actionable checklist of minimal reporting items, the DECIDE-AI guideline will facilitate the appraisal of these studies and replicability of their findings

    Simulation of Cold Nitrogen Flows in Nanonozzles with Atmospheric Inlet Pressures

    No full text
    corecore