23 research outputs found

    Detecting slope and urban potential unstable areas by means of multi-platform remote sensing techniques: the Volterra (Italy) case study

    Get PDF
    Volterra (Central Italy) is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR) and ground-based (GB-InSAR) radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT) was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and landscape, both in near-real time and back-analysis and at different scales of investigation

    Landslide mapping and characterization through Infrared Thermography (IRT): Suggestions for a methodological approach from some case studies

    Get PDF
    In this paper, the potential of Infrared Thermography (IRT) as a novel operational tool for landslide surveying, mapping and characterization was tested and demonstrated in different case studies, by analyzing various types of instability processes (rock slide/fall, roto-translational slide-flow). In particular, IRT was applied, both from terrestrial and airborne platforms, in an integrated methodology with other geomatcs methods, such as terrestrial laser scanning (TLS) and global positioning systems (GPS), for the detection and mapping of landslides’ potentially hazardous structural and morphological features (structural discontinuities and open fractures, scarps, seepage and moisture zones, landslide drainage network and ponds). Depending on the study areas’ hazard context, the collected remotely sensed data were validated through field inspections, with the purpose of studying and verifying the causes of mass movements. The challenge of this work is to go beyond the current state of the art of IRT in landslide studies, with the aim of improving and extending the investigative capacity of the analyzed technique, in the framework of a growing demand for effective Civil Protection procedures in landslide geo-hydrological disaster managing activities. The proposed methodology proved to be an effective tool for landslide analysis, especially in the field of emergency management, when it is often necessary to gather all the required information in dangerous environments as fast as possible, to be used for the planning of mitigation measures and the evaluation of hazardous scenarios. Advantages and limitations of the proposed method in the field of the explored applications were evaluated, as well as general operative recommendations and future perspectives

    Tracking morphological changes and slope instability using spaceborne and ground-based SAR data

    Get PDF
    Stromboli (Aeolian Archipelago, Italy) is an active volcano that is frequently affected by moderate to large mass wasting, which has occasionally triggered tsunamis. With the aim of understanding the relationship between the geomorphologic evolution and slope instability of Stromboli, remote sensing information from space-born Synthetic Aperture Radar (SAR) change detection and interferometry (InSAR) and Ground Based InSAR (GBInSAR) was compared with field observations and morphological analyses. Ground reflectivity and SqueeSAR⢠(an InSAR algorithm for surface deformation monitoring) displacement measurements from X-band COSMO-SkyMed satellites (CSK) were analysed together with displacement measurements from a permanent-sited, Ku-band GBInSAR system. Remote sensing results were compared with a preliminary morphological analysis of the Sciara del Fuoco (SdF) steep volcanic flank, which was carried out using a high-resolution Digital Elevation Model (DEM). Finally, field observations, supported by infrared thermographic surveys (IRT), allowed the interpretation and validation of remote sensing data. The analysis of the entire dataset (collected between January 2010 and December 2014) covers a period characterized by a low intensity of Strombolian activity. This period was punctuated by the occurrence of lava overflows, occurring from the crater terrace evolving downslope toward SdF, and flank eruptions, such as the 2014 event. The amplitude of the CSK images collected between February 22nd, 2010, and December 18th, 2014, highlights that during periods characterized by low-intensity Strombolian activity, the production of materials ejected from the crater terrace towards the SdF is generally low, and erosion is the prevailing process mainly affecting the central sector of the SdF. CSK-SqueeSAR⢠and GBInSAR data allowed the identification of low displacements in the SdF, except for high displacement rates (up to 1.5 mm/h) that were measured following both lava delta formation after the 2007 eruption and the lava overflows of 2010 and 2011. After the emplacement of the 2014 lava field, high displacements in the central and northern portions of the SdF were recorded by the GBInSAR device, whereas the spaceborne data were unable to detect these rapid movements. A comparison between IRT images and GBInSAR-derived displacement maps acquired during the same time interval revealed that the observed displacements along the SdF were related to the crumbling of newly emplaced 2014 lava and of its external breccia. Detected slope instability after the 2014 flank eruption was related to lava accumulation on the SdF and to the difference in the material underlying the 2014 lava flow: i) lava flows and breccia layers related to the 2002â03 and 2007 lava flow fields in the northern SdF sector and ii) loose volcaniclastic deposits in the central part of the SdF. This work emphasizes the importance of smart integration of spaceborne, SAR-derived hazard information with permanent-sited, operational monitoring by GBInSAR devices to detect areas impacted by mass wasting and volcanic activity

    Application of an ultra-wide band sensor-free wireless network for ground monitoring

    Get PDF
    Ground displacement monitoring is one of the most important aspects of early warning systems and risk management strategies when addressing phenomena such as landslides or subsidence. Several types of instrumentation already exist, but those able to provide real-time warnings on multiple time series are typically based on expensive technology, highlighting the need to develop a low-cost, easy to install system suitable for emergency monitoring. Therefore, a wireless network based on ultra-wideband impulse radiofrequency technology has been realized. The novelty of this network consists of its ability to measure the distance between nodes using the same signals used for transmission without the need for an actual measurement sensor. The system was tested by monitoring a mudflow in Central Italy and revealed its suitability as an early warning tool. More research on the integration of future low-cost hardware and and eventual industrialization would provide further improvement to this promising technology.Published1-142V. Struttura e sistema di alimentazione dei vulcani4V. Processi pre-eruttiviJCR Journa

    TXT-tool 2.039-3.2 Ground-based remote sensing techniques for landslides mapping, monitoring and early warning

    No full text
    The current availability of advanced remote sensing technologies in the field of landslide analysis allows rapid and easily updatable data acquisitions, improving the traditional capabilities of detection, mapping and monitoring, optimizing field work, and allowing to investigate hazardous and inaccessible areas while granting at the same time the safety of the operators. In the recent years in particular, ground-based remote sensing techniques have undergone a significant increase of usage, thanks to their technological development and quality data improvement, offering advantages with respect to air- or spaceborne remote sensing techniques, in terms of data spatial resolution and accuracy, fast measurement and processing times, and portability and cost-effectiveness of the acquiring instruments. These advantages can be highlighted in the framework of landslide emergency management, when it is often urgently necessary to minimize survey time when operating in dangerous environments and gather all the required information as fast as possible. In this paper, the potential of some ground-based remote sensing techniques and the effectiveness of their synergic use is explored in several case studies, analyzing different slope instability processes at different scales of emergency or post-emergency management. Thanks to them and to the support of existing bibliography, the most common fields of application are suggested for all the considered ground-based sensor technologies and their level of effectiveness is evaluated in relation to the dynamics of landslide types
    corecore