7,540 research outputs found

    Chaos and Fractals around Black Holes

    Full text link
    Fractal basin boundaries provide an important means of characterizing chaotic systems. We apply these ideas to general relativity, where other properties such as Lyapunov exponents are difficult to define in an observer independent manner. Here we discuss the difficulties in describing chaotic systems in general relativity and investigate the motion of particles in two- and three-black-hole spacetimes. We show that the dynamics is chaotic by exhibiting the basins of attraction of the black holes which have fractal boundaries. Overcoming problems of principle as well as numerical difficulties, we evaluate Lyapunov exponents numerically and find that some trajectories have a positive exponent.Comment: To appear in "Fractals" March issue (World Scientific), 20 figures available by request, also available from SLAC's gr-qc postscript archiv

    Analytic solutions of the 1D finite coupling delta function Bose gas

    Full text link
    An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite NN are given and from them results for general NN are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these new results are predicated on the Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by Phys. Rev.

    Surface roughness and flexural strength of laminated In-Ceram/Vitadur Alpha porcelain

    Get PDF
    Abstract no. 366published_or_final_versio

    Model of host-pathogen Interaction dynamics links In vivo optical imaging and immune responses

    Get PDF
    Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions
    corecore