94 research outputs found
Between and within-herd variation in blood and milk biomarkers in Holstein cows in early lactation
Both blood- and milk-based biomarkers have been analysed for decades in research settings, although often only in one herd, and without focus on the variation in the biomarkers that are specifically related to herd or diet. Biomarkers can be used to detect physiological imbalance and disease risk and may have a role in precision livestock farming (PLF). For use in PLF, it is important to quantify normal variation in specific biomarkers and the source of this variation. The objective of this study was to estimate the between- and within-herd variation in a number of blood metabolites (Ξ²-hydroxybutyrate (BHB), non-esterified fatty acids, glucose and serum IGF-1), milk metabolites (free glucose, glucose-6-phosphate, urea, isocitrate, BHB and uric acid), milk enzymes (lactate dehydrogenase and N-acetyl-Ξ²-D-glucosaminidase (NAGase)) and composite indicators for metabolic imbalances (Physiological Imbalance-index and energy balance), to help facilitate their adoption within PLF. Blood and milk were sampled from 234 Holstein dairy cows from 6 experimental herds, each in a different European country, and offered a total of 10 different diets. Blood was sampled on 2 occasions at approximately 14 days-in-milk (DIM) and 35 DIM. Milk samples were collected twice weekly (in total 2750 samples) from DIM 1 to 50. Multilevel random regression models were used to estimate the variance components and to calculate the intraclass correlations (ICCs). The ICCs for the milk metabolites, when adjusted for parity and DIM at sampling, demonstrated that between 12% (glucose-6-phosphate) and 46% (urea) of the variation in the metabolitesβ levels could be associated with the herd-diet combination. Intraclass Correlations related to the herd-diet combination were generally higher for blood metabolites, from 17% (cholesterol) to approximately 46% (BHB and urea). The high ICCs for urea suggest that this biomarker can be used for monitoring on herd level. The low variance within cow for NAGase indicates that few samples would be needed to describe the status and potentially a general reference value could be used. The low ICC for most of the biomarkers and larger within cow variation emphasises that multiple samples would be needed - most likely on the individual cows - for making the biomarkers useful for monitoring. The majority of biomarkers were influenced by parity and DIM which indicate that these should be accounted for if the biomarker should be used for monitoring
A Regularized Discrete Laminate Parametrization Technique with Applications to Wing-Box Design Optimization
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97055/1/AIAA2012-1519.pd
Prediction of metabolic clusters in early lactation dairy cows using models based on 2 milk biomarkers
The aim of this study was to describe metabolism of early-lactation dairy cows by clustering cows based on glucose, insulin-like growth factor I (IGF-I), free fatty acid, and beta-hydroxybutyrate (BHB) using the k-means method. Predictive models for metabolic clusters were created and validated using 3 sets of milk biomarkers (milk metabolites and enzymes, glycans on the immuno-gamma globulin fraction of milk, and Fourier-transform mid-infrared spectra of milk). Metabolic clusters are used to identify dairy cows with a balanced or imbalanced metabolic profile. Around 14 and 35 d in milk, serum or plasma concentrations of BHB, free fatty acids, glucose, and IGF-I were determined. Cows with a favorable metabolic profile were grouped together in what was referred to as the "balanced" group (n = 43) and were compared with cows in what was referred to as the "other balanced" group (n = 64). Cows with an unfavorable metabolic profile were grouped in what was referred to as the "imbalanced" group (n = 19) and compared with cows in what was referred to as the "other imbalanced" group (n = 88). Glucose and IGF-I were higher in balanced compared with other balanced cows. Free fatty acids and BHB were lower in balanced compared with other balanced cows. Glucose and IGF-I were lower in imbalanced compared with other imbalanced cows. Free fatty acids arid BHB were higher in imbalanced cows. Metabolic clusters were related to production parameters. There was a trend for a higher daily increase in fat- and protein-corrected milk yield in balanced cows, whereas that of imbalanced cows was higher. Dry matter intake and the daily increase in dry matter intake were higher in balanced cows and lower in imbalanced cows. Energy balance was continuously higher in balanced cows and lower in imbalanced cows. Weekly or twice-weekly milk samples were taken and milk metabolites and enzymes (milk glucose, glucose-6-phosphate, BHB, lactate dehydrogenase, N-acetyl-beta-D-glucosaminidase, isocitrate), immunogamma globulin glycans (19 peaks), and Fourier-transform mid-infrared spectra (1,060 wavelengths reduced to 15 principal components) were determined. Milk biomarkers with or without additional cow information (days in milk, parity, milk yield featurs) were used to create predictive models for the metabolic clusters. Accuracy for prediction of balanced (80%) and imbalanced (88%) cows was highest using milk metabolites and enzymes combined with days in milk and parity. The results and models of the present study are part of the GplusE project and identify novel milk-based phenotypes that may be used as predictors for metabolic and performance traits in early-lactation dairy cows
In situ guided tissue regeneration in musculoskeletal diseases and aging: Implementing pathology into tailored tissue engineering strategies
In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide βminimal invasiveβ applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future
Tissue engineering of functional articular cartilage: the current status
Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality
A mathematical model of tissue-engineered cartilage development under cyclic compressive loading
In this work a coupled model of solute transport and uptake, cell proliferation, extracellular matrix synthesis and remodeling of mechanical properties accounting for the impact of mechanical loading is presented as an advancement of a previously validated coupled model for free-swelling tissue-engineered cartilage cultures. Tissue-engineering con- structs were modeled as biphasic with a linear elastic solid, and relevant intrinsic mechanical stimuli in the constructs were determined by numerical simulation for use as inputs of the coupled model. The mechanical dependent formulations were derived from a calibration and parametrization dataset and validated by comparison of normalized ratios of cell counts, total glycosaminoglycans and collagen after 24h continuous cyclic unconο¬ned compression from another dataset. The model successfully ο¬t the calibration dataset and predicted the results from the validation dataset with good agreement, with average relative errors up to 3.1 and 4.3%, respectively. Temporal and spatial patterns determined for other model outputs were consistent with reported studies. The results suggest that the model describes the interaction between the simultaneous factors involved in in vitro tissue-engineered cartilage culture under dynamic loading. This approach could also be attractive for optimization of culture protocols, namely through the application to longer culture times and other types of mechanical stimul
Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities
Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and Ξ²-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity
- β¦