2,937 research outputs found
Semi-fermionic representation of SU(N) Hamiltonians
We represent the generators of the SU(N) algebra as bilinear combinations of
Fermi operators with imaginary chemical potential. The distribution function,
consisting of a minimal set of discrete imaginary chemical potentials, is found
for arbitrary N. This representation leads to the conventional temperature
diagram technique with standard Feynman codex, except that the Matsubara
frequencies are determined by neither integer nor half-integer numbers. The
real-time Schwinger-Keldysh formalism is formulated in the framework of complex
distribution functions. We discuss the continuous large N and SU(2) large spin
limits. We illustrate the application of this technique for magnetic and
spin-liquid states of the Heisenberg model.Comment: 11 pages, 7 EPS figures included, extended versio
From predicting to analyzing {HIV}-1 resistance to broadly neutralizing antibodies
Treatment with broadly neutralizing antibodies (bNAbs) has recently proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. For optimal treatment, susceptibility of the patient’s viral strains to a particular bNAb has to be ensured. Since no computational approaches are so far available, susceptibility can only be tested in expensive and time-consuming neutralization experiments. Here, we present well-performing computational models (AUC up to 0.84) that can predict HIV-1 resistance to bNAbs given the envelope sequence of the virus. Having learnt important binding sites of the bNAbs from the envelope sequence, the models are also biologically meaningful and useful for epitope recognition. Additional to the prediction result, we provide a motif logo that displays the contribution of the pivotal residues of the test sequence to the prediction. As our prediction models are based on non-linear kernels, we introduce a new visualization technique to improve the model interpretability. Moreover, we confirmed previous experimental findings that there is a trend towards antibody resistance for the subtype B population of the virus. While previous experiments considered rather small and selected cohorts, we were able to show a similar trend for the global HIV-1 population comprising all major subtypes by predicting the neutralization sensitivity for around 36,000 HIV-1 sequences- a scale-up which is very difficult to achieve in an experimental setting
How does infliximab work in rheumatoid arthritis?
Since the initial characterization of tumor necrosis factor alpha (TNFα), it has become clear that TNFα has diverse biologic activity. The realization that TNFα plays a role in rheumatoid arthritis (RA) has led to the development of anti-TNF agents for the treatment of RA. Infliximab, a chimeric monoclonal antibody that specifically, and with high affinity, binds to TNFα and neutralizes the cytokine, is currently approved for the treatment of RA and Crohn's disease, another immune-inflammatory disorder. In addition to establishing the safety and efficacy of infliximab, clinical research has also provided insights into the complex cellular and cytokine-dependent pathways involved in the pathophysiology of RA, including evidence that supports TNFα involvement in cytokine regulation, cell recruitment, angiogenesis, and tissue destruction
Creation of ventricular septal defects on the beating heart in a new pig model
Background/ Aims: So far, surgical and interventional therapies for muscular ventricular septal defects ( mVSDs) beyond the moderator band have had their limitations. Thus, alternative therapeutic strategies should be developed. We present a new animal model for the evaluation of such strategies. Methods: In a pig model ( n = 9), anterolateral thoracotomy was performed for exposure of the left ventricle. mVSDs were created under two- and three- dimensional echocardiography with a 7.5- mm sharp punch instrument, which was forwarded via a left ventricular puncture without extracorporeal circulation. Results: Creation of mVSDs was successful in all animals ( n = 9) confirmed by echocardiography, hemodynamic measurements and autopsy. The defects were located in the midmuscular ( n = 4), apical ( n = 1), inlet ( n = 2) and anterior part ( n = 2) of the muscular septum. All animals were hemodynamically stable for further procedures. The diameter and shunt volume of the mVSDs were 4.8 - 7.3 mm ( mean: 5.9 mm) and 12.9 - 41.3% ( mean: 22.1%), respectively. Autopsy confirmed in all animals the creation of a substantial defect. Conclusion: The described new technique for creation of an mVSD on the beating heart in a pig model is suitable for the evaluation of new therapeutic strategies for mVSD closure. Copyright (C) 2008 S. Karger AG, Basel
On the mass relation of a meson nonet
It is pointed out that the omission of the effects of the transition between
quarkonia or the assumption that the transition between quarkonia is
flavor-independent would result in the inconsistent results for the
pseudoscalar meson nonet. It is emphasized that the mass relation of the
non-ideal mixing meson nonets should incorporate the effects of the
flavor-dependent transition between quarkonia. The new mass relations of a
meson nonet are presented.Comment: Latex, 10 pages, to appear in Mod. Phys. Lett.
Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies
We use cosmological simulations from the Feedback In Realistic Environments
(FIRE) project, which implement a comprehensive set of stellar feedback
processes, to study ultra-violet (UV) metal line emission from the
circum-galactic medium of high-redshift (z=2-4) galaxies. Our simulations cover
the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of
Lyman break galaxies. Of the transitions we analyze, the low-ionization C III
(977 A) and Si III (1207 A) emission lines are the most luminous, with C IV
(1548 A) and Si IV (1394 A) also showing interesting spatially-extended
structures. The more massive halos are on average more UV-luminous. The UV
metal line emission from galactic halos in our simulations arises primarily
from collisionally ionized gas and is strongly time variable, with
peak-to-trough variations of up to ~2 dex. The peaks of UV metal line
luminosity correspond closely to massive and energetic mass outflow events,
which follow bursts of star formation and inject sufficient energy into
galactic halos to power the metal line emission. The strong time variability
implies that even some relatively low-mass halos may be detectable. Conversely,
flux-limited samples will be biased toward halos whose central galaxy has
recently experienced a strong burst of star formation. Spatially-extended UV
metal line emission around high-redshift galaxies should be detectable by
current and upcoming integral field spectrographs such as the Multi Unit
Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web
Imager (KCWI).Comment: 16 pages, 8 figures, accepted for publication in MNRA
Mirror matter admixtures in K_L \to \gamma\gamma
Based on possible albeit tiny, admixtures of mirror matter in ordinary mesons
we study the K_L \to \gamma\gamma transition. We find that this process can be
described with a small SU(3) symmetry breaking of only 3%. We also determine
the eta-eta' mixing angle and the pseudoscalar decay constants. The results for
these parameters are consistent with some obtained in the literature. They
favor two recent determinations; one based on two analytical constraints, and
another one based on next-to-leading order power corrections
Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions
We calculate the partition function of the -state Potts model
exactly for strips of the square and triangular lattices of various widths
and arbitrarily great lengths , with a variety of boundary
conditions, and with and restricted to satisfy conditions corresponding
to the ferromagnetic phase transition on the associated two-dimensional
lattices. From these calculations, in the limit , we determine
the continuous accumulation loci of the partition function zeros in
the and planes. Strips of the honeycomb lattice are also considered. We
discuss some general features of these loci.Comment: 12 pages, 12 figure
Utilization of vesicular-arbuscular mycorrhiza as a factor of integrated plant protection.
Data are provided in how far mycorrhiza infection changes the susceptible leaf periods and the development of fungal diseases in susceptible leaves. These studies are combined with the analysis of physiological modifications in the rubber tree, correlated with mycorrhizal symbiosis.Finally the importance of mycorrhiza-formation for the integrated-plant-protection of the rubber tree in Brazilian plantations (Amazon state) against Microcyclus ulei, the pathogen causing the South American leaf blight is designed
The compact Q=2 Abelian Higgs model in the London limit: vortex-monopole chains and the photon propagator
The confining and topological properties of the compact Abelian Higgs model
with doubly-charged Higgs field in three space-time dimensions are studied. We
consider the London limit of the model. We show that the monopoles are forming
chain-like structures (kept together by ANO vortices) the presence of which is
essential for getting simultaneously permanent confinement of singly-charged
particles and breaking of the string spanned between doubly-charged particles.
In the confinement phase the chains are forming percolating clusters while in
the deconfinement (Higgs) phase the chains are of finite size. The described
picture is in close analogy with the synthesis of the Abelian monopole and the
center vortex pictures in confining non--Abelian gauge models. The screening
properties of the vacuum are studied by means of the photon propagator in the
Landau gauge.Comment: 27 pages, 37 figure
- …