1,000 research outputs found

    Self-Similarity for Ballistic Aggregation Equation

    Full text link
    We consider ballistic aggregation equation for gases in which each particle is iden- ti?ed either by its mass and impulsion or by its sole impulsion. For the constant aggregation rate we prove existence of self-similar solutions as well as convergence to the self-similarity for generic solutions. For some classes of mass and/or impulsion dependent rates we are also able to estimate the large time decay of some moments of generic solutions or to build some new classes of self-similar solutions

    Self-similar solutions with fat tails for Smoluchowski's coagulation equation with locally bounded kernels

    Full text link
    The existence of self-similar solutions with fat tails for Smoluchowski's coagulation equation has so far only been established for the solvable and the diagonal kernel. In this paper we prove the existence of such self-similar solutions for continuous kernels KK that are homogeneous of degree γ[0,1)\gamma \in [0,1) and satisfy K(x,y)C(xγ+yγ)K(x,y) \leq C (x^{\gamma} + y^{\gamma}). More precisely, for any ρ(γ,1)\rho \in (\gamma,1) we establish the existence of a continuous weak self-similar profile with decay x(1+ρ)x^{-(1{+}\rho)} as xx \to \infty

    Asymptotics of self-similar solutions to coagulation equations with product kernel

    Full text link
    We consider mass-conserving self-similar solutions for Smoluchowski's coagulation equation with kernel K(ξ,η)=(ξη)λK(\xi,\eta)= (\xi \eta)^{\lambda} with λ(0,1/2)\lambda \in (0,1/2). It is known that such self-similar solutions g(x)g(x) satisfy that x1+2λg(x)x^{-1+2\lambda} g(x) is bounded above and below as x0x \to 0. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function h(x)=hλx1+2λg(x)h(x)=h_{\lambda} x^{-1+2\lambda} g(x) in the limit λ0\lambda \to 0. It turns out that h1+Cxλ/2cos(λlogx)h \sim 1+ C x^{\lambda/2} \cos(\sqrt{\lambda} \log x) as x0x \to 0. As xx becomes larger hh develops peaks of height 1/λ1/\lambda that are separated by large regions where hh is small. Finally, hh converges to zero exponentially fast as xx \to \infty. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE

    ABJ(M) Chiral Primary Three-Point Function at Two-loops

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%Article funded by SCOAP

    Power Steering Concept

    Get PDF
    This senior project was created in conjunction with Edwards Lifesciences. This project was created under an non-disclosure agreement and will not be submitted to any outside sources. The submitted title page will act as proof of completion

    Tailoring Three-Point Functions and Integrability III. Classical Tunneling

    Full text link
    We compute three-point functions between one large classical operator and two large BPS operators at weak coupling. We consider operators made out of the scalars of N=4 SYM, dual to strings moving in the sphere. The three-point function exponentiates and can be thought of as a classical tunneling process in which the classical string-like operator decays into two classical BPS states. From an Integrability/Condensed Matter point of view, we simplified inner products of spin chain Bethe states in a classical limit corresponding to long wavelength excitations above the ferromagnetic vacuum. As a by-product we solved a new long-range Ising model in the thermodynamic limit.Comment: 37 pages, 10 figure

    Thermal width and gluo-dissociation of quarkonium in pNRQCD

    Full text link
    The thermal width of heavy-quarkonium bound states in a quark-gluon plasma has been recently derived in an effective field theory approach. Two phenomena contribute to the width: the Landau damping phenomenon and the break-up of a colour-singlet bound state into a colour-octet heavy quark-antiquark pair by absorption of a thermal gluon. In the paper, we investigate the relation between the singlet-to-octet thermal break-up and the so-called gluo-dissociation, a mechanism for quarkonium dissociation widely used in phenomenological approaches. The gluo-dissociation thermal width is obtained by convoluting the gluon thermal distribution with the cross section of a gluon and a 1S quarkonium state to a colour octet quark-antiquark state in vacuum, a cross section that at leading order, but neglecting colour-octet effects, was computed long ago by Bhanot and Peskin. We will, first, show that the effective field theory framework provides a natural derivation of the gluo-dissociation factorization formula at leading order, which is, indeed, the singlet-to-octet thermal break-up expression. Second, the singlet-to-octet thermal break-up expression will allow us to improve the Bhanot--Peskin cross section by including the contribution of the octet potential, which amounts to include final-state interactions between the heavy quark and antiquark. Finally, we will quantify the effects due to final-state interactions on the gluo-dissociation cross section and on the quarkonium thermal width.Comment: 17 pages, 6 figure

    Partial domain wall partition functions

    Full text link
    We consider six-vertex model configurations on an n-by-N lattice, n =< N, that satisfy a variation on domain wall boundary conditions that we define and call "partial domain wall boundary conditions". We obtain two expressions for the corresponding "partial domain wall partition function", as an (N-by-N)-determinant and as an (n-by-n)-determinant. The latter was first obtained by I Kostov. We show that the two determinants are equal, as expected from the fact that they are partition functions of the same object, that each is a discrete KP tau-function, and, recalling that these determinants represent tree-level structure constants in N=4 SYM, we show that introducing 1-loop corrections, as proposed by N Gromov and P Vieira, preserves the determinant structure.Comment: 30 pages, LaTeX. This version, which appeared in JHEP, has an abbreviated abstract and some minor stylistic change
    corecore