24 research outputs found

    Identification of a potent herbal molecule for the treatment of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer (BCa)-related mortality still remains the second leading cause of cancer-related deaths worldwide. Patients with BCa have increasingly shown resistance and high toxicity to current chemotherapeutic drugs for which identification of novel targeted therapies are required.</p> <p>Methods</p> <p>To determine the effect of PDBD on BCa cells, estrogen-receptor positive (ER<sup>+</sup>)-MCF-7 and estrogen-receptor negative (ER<sup>-</sup>)-MDA 231 cells were treated with PDBD and the cell viability, apoptotic, cell cycle, Western blot and Promoter assays were performed.</p> <p>Results</p> <p>PDBD inhibits cell viability of ER<sup>+ </sup>and ER<sup>- </sup>BCa cells by inducing apoptosis without causing significant toxicity in normal breast epithelial cells. While dissecting the mechanism of action of PDBD on BCa, we found that PDBD inhibits Akt signaling and its downstream targets such as NF-κB activation, IAP proteins and Bcl-2 expression. On the other hand, activation of JNK/p38 MAPK-mediated pro-apoptotic signaling was observed in both ER<sup>+ </sup>and ER<sup>- </sup>BCa cells.</p> <p>Conclusion</p> <p>These findings suggest that PDBD may have wide therapeutic application in the treatment of BCa.</p

    Expression Pattern of the Pro-apoptotic Gene PAR-4 During the Morphogenesis of MCF-10A Human Mammary Epithelial Cells

    No full text
    The histological organization of the mammary gland involves a spatial interaction of epithelial and myoepithelial cells with the specialized basement membrane (BM), composed of extra-cellular matrix (ECM) proteins, which is disrupted during the tumorigenic process. The interactions between mammary epithelial cells and ECM components play a major role in mammary gland branching morphogenesis. Critical signals for mammary epithelial cell proliferation, differentiation, and survival are provided by the ECM proteins. Three-dimensional (3D) cell culture was developed to establish a system that simulates several features of the breast epithelium in vivo; 3D cell culture of the spontaneously immortalized cell line, MCF10A, is a well-established model system to study breast epithelial cell biology and morphogenesis. Mammary epithelial cells grown in 3D form spheroids, acquire apicobasal polarization, and form lumens that resemble acini structures, processes that involve cell death. Using this system, we evaluated the expression of the pro-apoptotic gene PAWR (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) by immunofluorescence and quantitative real time PCR (qPCR). A time-dependent increase in PAR-4 mRNA expression was found during the process of MCF10A acinar morphogenesis. Confocal microscopy analysis also showed that PAR-4 protein was highly expressed in the MCF10A cells inside the acini structure. During the morphogenesis of MCF10A cells in 3D cell culture, the cells within the lumen showed caspase-3 activation, indicating apoptotic activity. PAR-4 was only partially co-expressed with activated caspase-3 on these cells. Our results provide evidence, for the first time, that PAR-4 is differentially expressed during the process of MCF10A acinar morphogenesis

    Par-4 Is an Essential Downstream Target of DAP-like Kinase (Dlk) in Dlk/Par-4–mediated Apoptosis

    No full text
    Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired. In vitro phosphorylation assays employing Dlk and Par-4 phosphorylation mutants carrying alanine substitutions for residues S154, T155, S220, or S249, respectively, identified T155 as the major Par-4 phosphorylation site of Dlk. Coexpression experiments in REF52.2 cells revealed that phosphorylation of Par-4 at T155 by Dlk was essential for apoptosis induction in vivo. In the presence of the Par-4 T155A mutant Dlk was partially recruited to actin filaments but resided mainly in the nucleus. Consequently, apoptosis was not induced in Dlk/Par-4 T155A–expressing cells. In vivo phosphorylation of Par-4 at T155 was demonstrated with a phospho-specific Par-4 antibody. Our results demonstrate that Dlk-mediated phosphorylation of Par-4 at T155 is a crucial event in Dlk/Par-4-induced apoptosis
    corecore