155 research outputs found

    Spontaneous expectoration of pulmonary metastases in a child with osteogenic sarcoma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148355/1/pbc27611.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148355/2/pbc27611_am.pd

    A phase I trial of the trifunctional anti Her2 Ă— anti CD3 antibody ertumaxomab in patients with advanced solid tumors

    Get PDF
    Background: Ertumaxomab (ertu) is a bispecific, trifunctional antibody targeting Her2/neu, CD3 and the Fcγ-receptors I, IIa, and III forming a tri-cell complex between tumor cell, T cell and accessory cells. Methods: Patients (pts) with Her2/neu (1+/SISH positive, 2+ and 3+) expressing tumors progressing after standard therapy were treated to investigate safety, tolerability and preliminary efficacy. In this study, ertu was applied i.v. in 2 cycles following a predefined dose escalating scheme. Each cycle consisted of five ascending doses (10–500 μg) applied weekly within 28 days with a 21 day treatment-free interval. If 2 pts experienced a dose limiting toxicity (DLT) at a given dose level, the maximum tolerated dose (MTD) had been exceeded. Results: Fourteen heavily pretreated pts (e.g. breast, rectal, gastric cancer) were enrolled in the four main cohorts. Three (21 %) pts had to be replaced. Two serious adverse events (SAE) with possible relation to the investigational drug were seen, both fully reversible. A DLT was not detected. Consequently, the MTD could not be determined. All adverse events (AE) were transient and completely reversible. Most frequent AEs were fatigue (14/14), pain (13/14), cephalgia (12/14), chills (11/14), nausea (8/14), fever (7/14), emesis (7/14) and diarrhea (5/14). Single doses up to 300 μg were well tolerated (total dose up to 800 μg per cycle). We observed one partial remission and two disease stabilizations after first treatment cycle. Conclusions: Single doses up to 300 μg could be safely administered in an escalating dose scheme. Immunological responses and clinical activity warrant further evaluation in patients with Her2 over expressing tumors. Trial registration EudraCT number: 2011-003201-14; ClinicalTrials.gov identifier: NCT0156941

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Rupture process of large earthquakes in the northern Mexico subduction zone

    Full text link
    The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event ( M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event ( M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event ( M s 7.3) in the middle of the Michoacan “gap”; the Sept. 19, 1985 Michoacan mainshock ( M s 8.1); and the Sept. 21, 1985 Michoacan aftershock ( M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines the Moment Tensor Rate Functions ; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes the Moment Tensor Rate Functions methodology in detail.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43169/1/24_2004_Article_BF00875970.pd

    Trifunctional bispecific antibodies induce tumor-specific T cells and elicit a vaccination effect.

    No full text
    A major goal of tumor immunotherapy is the induction of long-lasting systemic T-cell immunity. Bispecific antibodies (bsAbs) that lack the immunoglobulin Fc region confer T-cell-mediated killing of tumor cells but do not induce long-term memory. In contrast, trifunctional bsAbs comprise an appropriate Fc region and, therefore, not only recruit T cells but also accessory cells that bear activating Fc gamma receptors (Fc gamma R), providing additional T-cell-activating signals and securing presentation of tumor-derived antigens to T cells. In this study, we show that trifunctional bsAbs induce a polyvalent T-cell response and, therefore, a vaccination effect. Mice were treated with melanoma cells and with a trifunctional bsAb directed against the melanoma target antigen ganglioside GD2 in addition to murine CD3. The trifunctional bsAb activated dendritic cells and induced a systemic immune response that was not replicated by treatment with the F(ab')(2)-counterpart lacking the Fc region. Restimulation of spleen and lymph node cells in vitro yielded T-cell lines that specifically produced interferon-gamma in response to tumor. In addition, trifunctional bsAb-induced T cells recognized various specific peptides derived from melanoma-associated antigens. Moreover, these polyvalent responses proved to be tumor-suppressive and could not be induced by the corresponding bsF(ab')(2)-fragment. Taken together, our findings provide preclinical proof of concept that trifunctional bsAbs can induce tumor-specific T cells with defined antigen specificity

    Potential of the trifunctional bispecific antibody Surek depends on dendritic cells: Rationale for a new approach of tumor immunotherapy.

    No full text
    Trifunctional bispecific antibodies (trAbs) used in tumor immunotherapy have the unique ability to recruit T cells toward antigens on the tumor cell surface and, moreover, to activate accessory cells through their immunoglobulin Fc region interacting with activating Fcγ receptors. This scenario gives rise to additional costimulatory signals required for T cell–mediated tumor cell destruction and induction of an immunologic memory. Here we show in an in vitro system that most effective trAb-dependent T-cell activation and tumor cell elimination are achieved in the presence of dendritic cells (DCs). On the basis of these findings, we devise a novel approach of cancer immunotherapy that combines the specific advantages of trAbs with those of DC-based vaccination. Simultaneous delivery of trAbs and in vitro differentiated DCs resulted in a markedly improved tumor rejection in a murine melanoma model compared with monotherapy
    • …
    corecore