1,870 research outputs found
The thermal conductivity reduction in HgTe/CdTe superlattices
The techniques used previously to calculate the three-fold thermal
conductivity reduction due to phonon dispersion in GaAs/AlAs superlattices
(SLs) are applied to HgTe/CdTe SLs. The reduction factor is approximately the
same, indicating that this SL may be applicable both as a photodetector and a
thermoelectric cooler.Comment: 5 pages, 2 figures; to be published in Journal of Applied Physic
Strong HI Lyman- variations from the 11 Gyr-old host star Kepler-444: a planetary origin ?
Kepler-444 provides a unique opportunity to probe the atmospheric composition
and evolution of a compact system of exoplanets smaller than the Earth. Five
planets transit this bright K star at close orbital distances, but they are too
small for their putative lower atmosphere to be probed at optical/infrared
wavelengths. We used the Space Telescope Imaging Spectrograph instrument
onboard the Hubble Space Telescope to search for the signature of the planet's
upper atmospheres at six independent epochs in the Ly- line. We detect
significant flux variations during the transits of both Kepler-444e and f
(~20%), and also at a time when none of the known planets was transiting
(~40%). Variability in the transition region and corona of the host star might
be the source of these variations. Yet, their amplitude over short time scales
(~2-3 hours) is surprisingly strong for this old (11.2+-1.0Gyr) and apparently
quiet main-sequence star. Alternatively, we show that the in-transits
variations could be explained by absorption from neutral hydrogen exospheres
trailing the two outer planets (Kepler-444e and f). They would have to contain
substantial amounts of water to replenish such hydrogen exospheres, which would
reveal them as the first confirmed ocean-planets. The out-of-transit
variations, however, would require the presence of a yet-undetected Kepler-444g
at larger orbital distance, casting doubt on the planetary origin scenario.
Using HARPS-N observations in the sodium doublet, we derived the properties of
two Interstellar Medium clouds along the line-of-sight toward Kepler-444. This
allowed us to reconstruct the stellar Ly- line profile and to estimate
the XUV irradiation from the star, which would still allow for a moderate mass
loss from the outer planets after 11.2Gyr. Follow-up of the system at XUV
wavelengths will be required to assess this tantalizing possibility.Comment: Accepted for publication in A&A Name of the system added to the title
in most recent versio
Tuning Fermi-surface properties through quantum confinement in metallic meta-lattices: New metals from old atoms
We describe a new class of nanoscale structured metals wherein the effects of
quantum confinement are combined with dispersive metallic electronic states to
induce modifications to the fundamental low-energy microscopic properties of a
three-dimensional metal: the density of states, the distribution of Fermi
velocities, and the collective electronic response.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
Anmeldelser, bekendtgjorte i statstidende i november måned.
Anmeldelser, bekendtgjorte i statstidende i november måned
Anmeldelser, bekendtgjorte i statstidende i januar måned.
Anmeldelser, bekendtgjorte i statstidende i januar måned
Anmeldelser, bekendtgjorte i statstidende i november måned.
Anmeldelser, bekendtgjorte i statstidende i november måned
Anmeldelser, bekendtgjorte i statstidende i september måned.
Anmeldelser, bekendtgjorte i statstidende i september måned
The long egress of GJ~436b's giant exosphere
The M dwarf GJ 436 hosts a transiting warm Neptune known to experience
atmospheric escape. Previous observations revealed the presence of a giant
hydrogen exosphere transiting the star for more than 5 h, and absorbing up to
56% of the flux in the blue wing of the stellar Lyman-{\alpha} line of neutral
hydrogen (H i Ly{\alpha}). The unexpected size of this comet-like exosphere
prevented observing the full transit of its tail. In this Letter, we present
new Ly{\alpha} observations of GJ 436 obtained with the Space Telescope Imaging
Spectrograph (STIS) instrument onboard the Hubble Space Telescope. The
stability of the Ly{\alpha} line over six years allowed us to combine these new
observations with archival data sets, substantially expanding the coverage of
the exospheric transit. Hydrogen atoms in the tail of the exospheric cloud keep
occulting the star for 10-25 h after the transit of the planet, remarkably
confirming a previous prediction based on 3D numerical simulations with the
EVaporating Exoplanet code (EVE). This result strengthens the interpretation
that the exosphere of GJ 436b is shaped by both radiative braking and charge
exchanges with the stellar wind. We further report flux decreases of 15 +/- 2%
and 47 +/- 10% in the red wing of the Ly{\alpha} line and in the line of
ionised silicon (Si iii). Despite some temporal variability possibly linked
with stellar activity, these two signals occur during the exospheric transit
and could be of planetary origin. Follow-up observations will be required to
assess the possibility that the redshifted Ly{\alpha} and Si iii absorption
signatures arise from interactions between the exospheric flow and the magnetic
field of the star.Comment: 10 pages, 7 figures, published in A&
Phase diagrams of correlated electrons: systematic corrections to the mean field theory
Perturbative corrections to the mean field theory for particle-hole
instabilities of interacting electron systems are computed within a scheme
which is equivalent to the recently developed variational approach to the
Kohn-Luttinger superconductivity. This enables an unbiased comparison of
particle-particle and particle-hole instabilities within the same approximation
scheme. A spin-rotation invariant formulation for the particle-hole
instabilities in the triplet channel is developed. The method is applied to the
phase diagram of the t-t' Hubbard model on the square lattice. At the Van Hove
density, antiferromagnetic and d-wave Pomeranchuk phases are found to be stable
close to half filling. However, the latter phase is confined to an extremely
narrow interval of densities and away from the singular filling, d-wave
superconducting instability dominates
- …