3,091 research outputs found
A local hidden variable model of quantum correlation exploiting the detection loophole
A local hidden variable model exploiting the detection loophole to reproduce
exactly the quantum correlation of the singlet state is presented. The model is
shown to be compatible with both the CHSH and the CH Bell inequalities.
Moreover, it bears the same rotational symmetry as spins. The reason why the
model can reproduce the quantum correlation without violating the Bell theorem
is that in the model the efficiency of the detectors depends on the local
hidden variable. On average the detector efficiency is limited to 75%.Comment: 6 pages + 1 figure. A software producing data violating Bell
inequality between two classical computers can be downloaded from
http://www.gapoptique.unige.ch/News/BellSoft.as
Minimal dynamical systems on prime C*-algebras
We give a number of examples of exotic actions of locally compact groups on
separable nuclear C*-algebras. In particular, we give examples of the
following:
(1) Minimal effective actions of and on unital nonsimple
prime AF algebras.
(2) For any second countable noncompact locally compact group, a minimal
effective action on a separable nuclear nonsimple prime C*-algebra.
(3) For any amenable second countable noncompact locally compact group, a
minimal effective action on a separable nuclear nonsimple prime C*-algebra
(unital when the group is or ) such that the
crossed product is ( when the
group is ).
(4) For any second countable locally compact abelian group which is not
discrete, an action on such that the crossed
product is a nonsimple prime C*-algebra.
In most of these situations, we can specify the primitive ideal space of the
C*-algebra (of the crossed product in the last item) within a class of spaces.Comment: This paper was nearly done about 10 years ago, but was pushed aside
under the press of other projects, and then forgotten. It is now being
posted, after Kirchberg's death. The key preprint of Harnisch and Kirchberg
was never published and has disappeared from the website of the Universitaet
Muenster. It is temporarily at:
https://pages.uoregon.edu/ncp/Research/Misc/heft399.pd
Non locality, closing the detection loophole and communication complexity
It is shown that the detection loophole which arises when trying to rule out
local realistic theories as alternatives for quantum mechanics can be closed if
the detection efficiency is larger than
where is the dimension of the entangled system. Furthermore it is argued
that this exponential decrease of the detector efficiency required to close the
detection loophole is almost optimal. This argument is based on a close
connection that exists between closing the detection loophole and the amount of
classical communication required to simulate quantum correlation when the
detectors are perfect.Comment: 4 pages Latex, minor typos correcte
Bell inequality and the locality loophole: Active versus passive switches
All experimental tests of the violation of Bell's inequality suffer from some
loopholes. We show that the locality loophole is not independent of the
detection loophole: in experiments using low efficient detectors, the locality
loophole can be closed equivalently using active or passive switches.Comment: 6 pages, 1 figur
Assessment of processing technologies which may improve the nutritional composition of dairy products – Overview of progress
Among consumers there is a growing demand for food products with a natural nutritional-physiological advantage over comparable conventional products. As part of an EU funded project, ALP is examining the possible impact of processing on nutritionally valuable milk components, using the example of conjugated linoleic acids (CLA). The extent to which processing influences the CLA content of the end product was determined by literature research and own investigations of organic and conventional butter. Furthermore, new chemical, sensory-based and bio crystallization methods were evaluated by ALP and the University of Kassel to determine the oxidation stability of butter. In a further step the storage stability of CLA enriched and conventional butter was examined and the different methods will be compared. As a third objective a process for low-input CLA enrichment of milk fat (with a focus on alpine butter) has been developed. Since the process selected for the work is a physical enrichment process, it is accepted by international organic farming and food groups. Among the many benefits ascribed to CLA, it is believed to be an effective agent against cancer. The demand for foods with properties that promote human health is growing. The dairy industry has the opportunity to meet this demand by developing new dairy products with a nutritional-physiological function for the functional food market
On the accuracy of retrieved wind information from Doppler lidar observations
A single pulsed Doppler lidar was successfully deployed to measure air flow and turbulence over the Malvern hills, Worcester, UK. The DERA Malvern lidar used was a CO2 µm pulsed Doppler lidar. The lidar pulse repetition rate was 120 Hz and had a pulse duration of 0.6 µs The system was set up to have 41 range gates with range resolution of 112 m. This gave a theoretical maximum range of approximately 4.6 km. The lidar site was 2 km east of the Malvern hill ridge which runs in a north-south direction and is approximately 6 km long. The maximum height of the ridge is 430 m. Two elevation scans (Range-Height Indicators) were carried out parallel and perpendicular to the mean surface flow. Since the surface wind was primarily westerly the scans were carried out perpendicular and parallel to the ridge of the Malvern hills.
The data were analysed and horizontal winds, vertical winds and turbulent fluxes were calculated for profiles throughout the boundary layer. As an aid to evaluating the errors associated with the derivation of velocity and turbulence profiles, data from a simple idealized profile was also analysed using the same method. The error analysis shows that wind velocity profiles can be derived to an accuracy of 0.24 m s-1 in the horizontal and 0.3 m s-1 in the vertical up to a height of 2500 m. The potential for lidars to make turbulence measurements, over a wide area, through the whole depth of the planetary boundary layer and over durations from seconds to hours is discussed
Experimental Test of Relativistic Quantum State Collapse with Moving Reference Frames
An experimental test of relativistic wave-packet collapse is presented. The
tested model assumes that the collapse takes place in the reference frame
determined by the massive measuring detectors. Entangled photons are measured
at 10 km distance within a time interval of less than 5 ps. The two apparatuses
are in relative motion so that both detectors, each in its own inertial
reference frame, are first to perform the measurement. The data always
reproduces the quantum correlations and thus rule out a class of collapse
models. The results also set a lower bound on the "speed of quantum
information" to 0.66 x 10^7 and 1.5 x 10^4 times the speed of light in the
Geneva and the background radiation reference frames, respectively. The very
difficult and deep question of where the collapse takes place - if it takes
place at all - is considered in a concrete experimental context.Comment: 4 pages + 2 ps figure
Inequalities for dealing with detector inefficiencies in Greenberger-Horne-Zeilinger-type experiments
In this article we show that the three-particle GHZ theorem can be
reformulated in terms of inequalities, allowing imperfect correlations due to
detector inefficiencies. We show quantitatively that taking into accout those
inefficiencies, the published results of the Innsbruck experiment support the
nonexistence of local hidden variables that explain the experimental result.Comment: LaTeX2e, 9 pages, 3 figures, to appear in Phys. Rev. Let
Consistent Quantum Counterfactuals
An analysis using classical stochastic processes is used to construct a
consistent system of quantum counterfactual reasoning. When applied to a
counterfactual version of Hardy's paradox, it shows that the probabilistic
character of quantum reasoning together with the ``one framework'' rule
prevents a logical contradiction, and there is no evidence for any mysterious
nonlocal influences. Counterfactual reasoning can support a realistic
interpretation of standard quantum theory (measurements reveal what is actually
there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8
pages, 2 figure
- …