332 research outputs found
Improving Software Reliability Forecasting
This work investigates some methods for software reliability forecasting. A supermodel is presented as a suited tool for prediction of reliability in software project development. Also, times series forecasting for cumulative interfailure time is proposed and illustrated
Distributed model predictive control of leader-follower systems using an interior point method with efficient computations
Standard model predictive control strategies imply the online computation of
control inputs at each sampling instance, which traditionally limits this type
of control scheme to systems with slow dynamics. This paper focuses on
distributed model predictive control for large-scale systems comprised of
interacting linear subsystems, where the online computations required for the
control input can be distributed amongst them. A model predictive controller
based on a distributed interior point method is derived, for which every
subsystem in the network can compute stabilizing control inputs using
distributed computations. We introduce local terminal sets and cost functions,
which together satisfy distributed invariance conditions for the whole system,
that guarantees stability of the closed-loop interconnected system. We show
that the synthesis of both terminal sets and terminal cost functions can be
done in a distributed framework.Comment: 8 pages, Partially Accepted in the Proceedings of the 2013 American
Control Conferenc
New oral anticoagulants and their reversal agents
Atrial fibrillation is a commonly encountered pathology in medical practice, and its prevalence has shown a continuous rise over the past years. Atrial fibrillation has a significant impact on patients\u27 quality of life, not only due to the standard anticoagulant treatment with vitamin K antagonists that require close monitoring and dose adjustment, but also due to the fragile equilibrium between hemorrhagic and thrombotic risks. The introduction of new oral anticoagulants (NOACs) in the treatment guidelines for atrial fibrillation has improved the quality of life, as NOACs do not require close monitoring or dose adjustments. However, even if the safety profile of the NOACs regarding the hemorrhagic risk is superior to vitamin K antagonists, the problem raised by an unexpected hemorrhage (e.g. severe hemorrhage after an accident) and the need for efficient hemostasis in a chronic anticoagulated patient has remained unsolved. To find a solution for this problem, reversal agents for NOACs have been developed and tested, and two of them, idarucizumab and andexanet-alpha, have already been approved by the FDA, thus making NOACs increasingly appealing as a choice of anticoagulation treatment
Universal behaviour of ideal and interacting quantum gases in two dimensions
I discuss ideal and interacting quantum gases obeying general fractional
exclusion statistics. For systems with constant density of single-particle
states, described in the mean field approximation, the entropy depends neither
on the microscopic exclusion statistics, nor on the interaction. Such systems
are called {\em thermodynamically equivalent} and I show that the microscopic
reason for this equivalence is a one-to-one correspondence between the excited
states of these systems. This provides a method, different from the
bosonisation technique, to transform between systems of different exclusion
statistics. In the last section the macroscopic aspects of this method are
discussed.
In Appendix A I calculate the fluctuation of the ground state population of a
condensed Bose gas in grandcanonical ensemble and mean field approximation,
while in Appendix B I show a situation where although the system exhibits
fractional exclusion properties on microscopic energy intervals, a rigorous
calculation of the population of single particle states reveals a condensation
phenomenon. This also implies a malfunction of the usual and simplified
calculation technique of the most probable statistical distributions.Comment: About 14 journal pages, with 1 figure. Changes: Body of paper: same
content, with slight rephrasing. Apendices are new. In the original
submission I just mentioned the condensation, which is now detailed in
Appendix B. They were intended for a separate paper. Reason for changes:
rejection from Phys. Rev. Lett., resubmission to J. Phys. A: Math. Ge
Nano-Socketed Nickel Particles with Enhanced Coking Resistance Grown \u3cem\u3ein situ\u3c/em\u3e by Redox Exsolution
Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic spplications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimenstion for tailoring particle-substrate interactions in the context of increasing interest for emergent interfactial phenomena
New oral anticoagulants and their reversal agents
Atrial fibrillation is a commonly encountered pathology in medical practice, and its prevalence has shown a continuous rise over the past years. Atrial fibrillation has a significant impact on patients\u27 quality of life, not only due to the standard anticoagulant treatment with vitamin K antagonists that require close monitoring and dose adjustment, but also due to the fragile equilibrium between hemorrhagic and thrombotic risks. The introduction of new oral anticoagulants (NOACs) in the treatment guidelines for atrial fibrillation has improved the quality of life, as NOACs do not require close monitoring or dose adjustments. However, even if the safety profile of the NOACs regarding the hemorrhagic risk is superior to vitamin K antagonists, the problem raised by an unexpected hemorrhage (e.g. severe hemorrhage after an accident) and the need for efficient hemostasis in a chronic anticoagulated patient has remained unsolved. To find a solution for this problem, reversal agents for NOACs have been developed and tested, and two of them, idarucizumab and andexanet-alpha, have already been approved by the FDA, thus making NOACs increasingly appealing as a choice of anticoagulation treatment
Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3
The authors would like to thank EPSRC Platform (Grant EP/K015540/1) and the Royal Society for Wolfson Merit Award (WRMA 2012/R2) for funding. We also acknowledge support from China Scholarship Council (No. 201406690029).Enhancing the stability of introduced metal catalysts on oxide surfaces is a major issue for infiltrated anodes in Solid Oxide Cells (SOC) and other related catalysis field. Stoichiometric SrTiO3 (STO) and A-site cation deficient LaxSr1 − 3x/2TiO3 (LST) were compared to investigate the influence of stoichiometry upon the contact between metal and oxide, in order to improve the bonding of catalyst and substrate. Optimization of oxidizing and reducing temperatures for Ni infiltration processes was performed to get good nanoparticles distribution on the perovskite surface. Thermogravimetry (TG) and X-ray diffraction (XRD) analysis showed the formation of NiO, Ni after oxidation and reduction, respectively. Energy Dispersive Spectroscopy (EDS) on a Transmission Electron Microscopy (TEM) was employed to characterize the nickel nanoparticles on the LST surface. No obvious elemental transfer happened between Ni and LST. The TEM images showed Ni nanoparticles bonded well to the A-site deficient perovskite with large contact area. TG analysis in reducing atmosphere indicates interactions between metal-oxide interactions in deficient samples. This may improve the Ni distribution on perovskite surface and further control the growth of Ni particles when heated at extreme temperature.PostprintPeer reviewe
CO2 conversion via coupled plasma-electrolysis process
Surplus renewable electricity used to convert CO2 into CO, the building block of liquid fuels, advances the energy transition by enabling large-scale, long-term energy storage and the synthesis of fuel for long-haul transportation. Among the various technologies developed, renewable electricity driven conversion of CO2 by high-temperature electrolysis and by plasmolysis offer a tantalising potential. High-temperature electrolysis is characterized by high-yield and energy-efficiency and the direct separation of the CO2 dissociation products CO and O2. However, the difficulty to break the carbon-oxygen double bond poses challenging requirements on electrode materials. CO2 plasmolysis on the other hand, offers a similar energy efficiency, does not employ scarce materials, is easy to upscale, but requires efficient gas separation and recuperation because the produced CO remains mixed with O2 and residual CO2. Here, we demonstrate that the coupling of the two processes leads to a renewable-electricity-driven route for producing CO from CO2, overcoming the main bottleneck of CO2 plasmolysis. A simulated CO2 plasmolysis gas mixture is supplied to a high-temperature electrolyser to separate the product gases electrochemically. Our results show that the product stream of the coupled-process contains 91% less oxygen and 138% more CO compared with the bare plasmolysis process. Apart from upgrading the produced gas mixture, this coupled approach benefits from material stability. Durability tests (~100 h) show better stability in coupled operation when compared with conventional CO2 electrolysis. Synergy between plasmolysis and electrolysis opens up a novel route to efficient CO2 conversion into valuable CO feedstock for the synthesis of long-chain hydrocarbons
- …