320 research outputs found

    Is Honey, as Adjunctive Therapy, Effective in Alleviating Nasal Allergy Symptoms?

    Get PDF
    OBJECTIVE: The objective of this selective EBM review is to determine whether honey used as adjunctive therapy is effective in alleviating nasal allergy symptoms. STUDY DESIGN: This is a systematic review of three randomized controlled trials published between 2010-2013, all in the English language. DATA SOURCES: Three randomized controlled trials, which studied the effects of honey used as adjunctive therapy for the relief of nasal allergy symptoms, these were obtained using PubMed. OUTCOMES MEASURED: The outcome of each study was a patient reported decrease in the number of days and the severity of nasal allergy symptoms including: sneezing, itching, nasal blockage, and rhinorrhea. These outcomes were measured via daily diary entries, questionnaires regarding symptom severity and need for medication, Sino-Nasal Outcome Test (SNOT-22) questionnaire, and a 7-point visual analog symptom severity scale. RESULTS: All three RCTs determined that nasal allergy symptoms were decreased a statistically significant amount, as defined by a p-value \u3c0.05, with the addition of honey in subject’s daily medication regimen. This was compared to control, which consisted of patients taking only their normal daily medication and no honey products or a visually and taste matched placebo. CONCLUSIONS: The results of this systematic review have demonstrated that honey is effective in alleviating nasal allergy symptoms in numerous mediums including nasal spray as well as oral intake when produced in the geographic area in which the patient population resides. Whilst positive and promising results were obtained from these studies, additional research with larger patient populations, standardized honey product, and increased time frame of study is required to ascertain how beneficial honey truly is and if these benefits last

    SUMO is a pervasive regulator of meiosis

    Get PDF
    Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here, we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism

    Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    Get PDF
    A critical determinant of tumor eradication by adoptive immunotherapy is the tumor associated antigen recognized by cytotoxic T lymphocytes. Here the authors generate ex vivo autologous cytotoxic T lymphocytes by exposure to antigens induced by DNA demethylation and report the results of a phase 1 trial of 25 patients with recurrent glioblastoma multiforme with tumor regression in three patients

    CYP2D6 Genotype and Tamoxifen Response in Postmenopausal Women with Endocrine-Responsive Breast Cancer: The Breast International Group 1-98 Trial

    Get PDF
    Background Adjuvant tamoxifen therapy is effective for postmenopausal women with endocrine-responsive breast cancer. Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes tamoxifen to clinically active metabolites, and CYP2D6 polymorphisms may adversely affect tamoxifen efficacy. In this study, we investigated the clinical relevance of CYP2D6 polymorphisms. Methods We obtained tumor tissues and isolated DNA from 4861 of 8010 postmenopausal women with hormone receptor-positive breast cancer who enrolled in the randomized, phase III double-blind Breast International Group (BIG) 1-98 trial between March 1998 and May 2003 and received tamoxifen and/or letrozole treatment. Extracted DNA was used for genotyping nine CYP2D6 single-nucleotide polymorphisms using polymerase chain reaction-based methods. Genotype combinations were used to categorize CYP2D6 metabolism phenotypes as poor, intermediate, and extensive metabolizers (PM, IM, and EM, respectively; n = 4393 patients). Associations of CYP2D6 metabolism phenotypes with breast cancer-free interval (referred to as recurrence) and treatment-induced hot flushes according to randomized endocrine treatment and previous chemotherapy were assessed. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). All statistical tests were two-sided. Results No association between CYP2D6 metabolism phenotypes and breast cancer-free interval was observed among patients who received tamoxifen monotherapy without previous chemotherapy (P = .35). PM or IM phenotype had a non-statistically significantly reduced risk of breast cancer recurrence compared with EM phenotype (PM or IM vs EM, HR of recurrence = 0.86, 95% CI = 0.60 to 1.24). CYP2D6 metabolism phenotype was associated with tamoxifen-induced hot flushes (P = .020). Both PM and IM phenotypes had an increased risk of tamoxifen-induced hot flushes compared with EM phenotype (PM vs EM, HR of hot flushes = 1.24, 95% CI = 0.96 to 1.59; IM vs EM, HR of hot flushes = 1.23, 95% CI = 1.05 to 1.43). Conclusions CYP2D6 phenotypes of reduced enzyme activity were not associated with worse disease control but were associated with increased hot flushes, contrary to the hypothesis. The results of this study do not support using the presence or absence of hot flushes or the pharmacogenetic testing of CYP2D6 to determine whether to treat postmenopausal breast cancer patients with tamoxife

    Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory assays are needed for early stage non-small lung cancer (NSCLC) that can link molecular and clinical heterogeneity to predict relapse after surgical resection. We technically validated two miRNA assays for prediction of relapse in NSCLC. Total RNA from seventy-five formalin-fixed and paraffin-embedded (FFPE) specimens was extracted, labeled and hybridized to Affymetrix miRNA arrays using different RNA input amounts, ATP-mix dilutions, array lots and RNA extraction- and labeling methods in a total of 166 hybridizations. Two combinations of RNA extraction- and labeling methods (assays I and II) were applied to a cohort of 68 early stage NSCLC patients.</p> <p>Results</p> <p>RNA input amount and RNA extraction- and labeling methods affected signal intensity and the number of detected probes and probe sets, and caused large variation, whereas different ATP-mix dilutions and array lots did not. Leave-one-out accuracies for prediction of relapse were 63% and 73% for the two assays. Prognosticator calls ("no recurrence" or "recurrence") were consistent, independent on RNA amount, ATP-mix dilution, array lots and RNA extraction method. The calls were not robust to changes in labeling method.</p> <p>Conclusions</p> <p>In this study, we demonstrate that some analytical conditions such as RNA extraction- and labeling methods are important for the variation in assay performance whereas others are not. Thus, careful optimization that address all analytical steps and variables can improve the accuracy of prediction and facilitate the introduction of microRNA arrays in the clinic for prediction of relapse in stage I non-small cell lung cancer (NSCLC).</p

    The Ubiquitin Ligase Ubr2, a Recognition E3 Component of the N-End Rule Pathway, Stabilizes Tex19.1 during Spermatogenesis

    Get PDF
    Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19) has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway

    An inquiry into good hospital governance: A New Zealand-Czech comparison

    Get PDF
    BACKGROUND: This paper contributes to research in health systems literature by examining the role of health boards in hospital governance. Health care ranks among the largest public sectors in OECD countries. Efficient governance of hospitals requires the responsible and effective use of funds, professional management and competent governing structures. In this study hospital governance practice in two health care systems – Czech Republic and New Zealand – is compared and contrasted. These countries were chosen as both, even though they are geographically distant, have a universal right to 'free' health care provided by the state and each has experienced periods of political change and ensuing economic restructuring. Ongoing change has provided the impetus for policy reform in their public hospital governance systems. METHODS: Two comparative case studies are presented. They define key similarities and differences between the two countries' health care systems. Each public hospital governance system is critically analysed and discussed in light of D W Taylor's nine principles of 'good governance'. RESULTS: While some similarities were found to exist, the key difference between the two countries is that while many forms of 'ad hoc' hospital governance exist in Czech hospitals, public hospitals in New Zealand are governed in a 'collegiate' way by elected District Health Boards. These findings are discussed in relation to each of the suggested nine principles utilized by Taylor. CONCLUSION: This comparative case analysis demonstrates that although the New Zealand and Czech Republic health systems appear to show a large degree of convergence, their approaches to public hospital governance differ on several counts. Some of the principles of 'good governance' existed in the Czech hospitals and many were practiced in New Zealand. It would appear that the governance styles have evolved from particular historical circumstances to meet each country's specific requirements. Whether or not current practice could be improved by paying closer attention to theoretical models of 'good governance' is debatable

    Analgesic and Anti-Inflammatory Effects of the Novel Semicarbazide-Sensitive Amine-Oxidase Inhibitor SzV-1287 in Chronic Arthritis Models of the Mouse.

    Get PDF
    Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage
    corecore