6,219 research outputs found

    Conservation laws in gravity: A unified framework

    Full text link
    We study general metric-affine theories of gravity in which the metric and connection are the two independent fundamental variables. In this framework, we use Lagrange-Noether methods to derive the identities and the conservation laws that correspond to the invariance of the action under general coordinate transformations. The results obtained are applied to generalized models with nonminimal coupling of matter and gravity, with a coupling function that depends arbitrarily on the covariant gravitational field variables.Comment: 9 pages, 1 figure, RevTex format. arXiv admin note: text overlap with arXiv:1303.605

    Equations of motion in metric-affine gravity: A covariant unified framework

    Full text link
    We derive the equations of motion of extended deformable bodies in metric-affine gravity. The conservation laws which follow from the invariance of the action under the general coordinate transformations are used as a starting point for the discussion of the dynamics of extended deformable test bodies. By means of a covariant approach, based on Synge's world function, we obtain the master equation of motion for an arbitrary system of coupled conserved currents. This unified framework is then applied to metric-affine gravity. We confirm and extend earlier findings; in particular, we once again demonstrate that it is only possible to detect the post-Riemannian spacetime geometry by ordinary (non-microstructured) test bodies if gravity is nonminimally coupled to matter.Comment: 13 pages, RevTex format. Dedicated to Friedrich W. Hehl on the occasion of his birthda

    Generalized deviation equation and determination of the curvature in General Relativity

    Full text link
    We derive a generalized deviation equation -- analogous to the well-known geodesic deviation equation -- for test bodies in General Relativity. Our result encompasses and generalizes previous extensions of the standard geodesic deviation equation. We show how the standard as well as a generalized deviation equation can be used to measure the curvature of spacetime by means of a set of test bodies. In particular, we provide exact solutions for the curvature by using the standard deviation equation as well as its next order generalization.Comment: 16 pages, 5 figures, RevTex forma

    Equations of motion in scalar-tensor theories of gravity: A covariant multipolar approach

    Full text link
    We discuss the dynamics of extended test bodies for a large class of scalar-tensor theories of gravitation. A covariant multipolar Mathisson-Papapetrou-Dixon type of approach is used to derive the equations of motion in a systematic way for both Jordan and Einstein formulations of these theories. The results obtained provide the framework to experimentally test scalar-tensor theories by means of extended test bodies.Comment: 5 pages, RevTex forma

    Prospects of detecting spacetime torsion

    Full text link
    How to detect spacetime torsion? In this essay we provide the theoretical basis for an answer to this question. Multipolar equations of motion for a very general class of gravitational theories with nonminimal coupling in spacetimes admitting torsion are given. Our findings provide a framework for the systematic testing of whole classes of theories with the help of extended test bodies. One surprising feature of nonminimal theories turns out to be their potential sensitivity to torsion of spacetime even in experiments with ordinary (not microstructured) test matter.Comment: 6 pages, this essay received a honorable mention in the 2014 essay competition of the Gravity Research Foundatio

    Equivalence principle in scalar-tensor gravity

    Full text link
    We present a direct confirmation of the validity of the equivalence principle for unstructured test bodies in scalar tensor gravity. Our analysis is complementary to previous approaches and valid for a large class of scalar-tensor theories of gravitation. A covariant approach is used to derive the equations of motion in a systematic way and allows for the experimental test of scalar-tensor theories by means of extended test bodies.Comment: 5 pages, RevTex forma

    Conservation laws and covariant equations of motion for spinning particles

    Full text link
    We derive the Noether identities and the conservation laws for general gravitational models with arbitrarily interacting matter and gravitational fields. These conservation laws are used for the construction of the covariant equations of motion for test bodies with minimal and nonminimal coupling.Comment: 6 pages, Proceedings of XV Advanced Research Workshop on High Energy Spin Physics "DSPIN-13", Dubna, 8-12 October 2013, Eds. A.V. Efremov and S.V. Goloskokov (Joint Inst. Nucl. Res., JINR, Dubna, 2014) p. 110-11

    Deviation equation in Riemann-Cartan spacetime

    Full text link
    We derive a generalized deviation equation in Riemann-Cartan spacetime. The equation describes the dynamics of the connecting vector which links events on two general adjacent world lines. Our result is valid for any theory in a Riemann-Cartan background, in particular, it is applicable to a large class of gravitational theories which go beyond the general relativistic framework.Comment: 9 pages, 1 figur

    Unraveling gravity beyond Einstein with extended test bodies

    Full text link
    The motion of test bodies in gravity is tightly linked to the conservation laws. This well-known fact in the context of General Relativity is also valid for gravitational theories which go beyond Einstein's theory. Here we derive the equations of motion for test bodies for a very large class of gravitational theories with a general nonminimal coupling to matter. These equations form the basis for future systematic tests of alternative gravity theories. Our treatment is covariant and generalizes the classic Mathisson-Papapetrou-Dixon result for spinning (extended) test bodies. The equations of motion for structureless test bodies turn out to be surprisingly simple, despite the very general nature of the theories considered.Comment: 4 pages, 2 figures, to appear in Phys. Lett.

    Equations of motion in gravity theories with nonminimal coupling: a loophole to detect torsion macroscopically?

    Full text link
    We derive multipolar equations of motion for gravitational theories with general nonminimal coupling in spacetimes admitting torsion. Our very general findings allow for the systematic testing of whole classes of theories by means of extended test bodies. One peculiar feature of certain subclasses of nonminimal theories turns out to be their sensitivity to post-Riemannian spacetime structures even in experiments without microstructured test matter.Comment: 9 pages, RevTex forma
    • …
    corecore