38 research outputs found

    String Unification at Intermediate Energies: Phenomenological Viability and Implications

    Full text link
    Motivated by the fact that the string scale can be many orders of magnitude lower than the Planck mass, we investigate the required modifications in the MSSM β\beta--functions in order to achieve intermediate (10101310^{10-13}GeV) scale unification, keeping the traditional logarithmic running of the gauge couplings. We present examples of string unified models with the required extra matter for such a unification while we also check whether other MSSM properties (such as radiative symmetry breaking) are still applicable.Comment: 11 pages, 2 figure included in the ps file, uses psfig.st

    Towards a realistic Standard Model from D-brane configurations

    Full text link
    Effective low energy models arising in the context of D-brane configurations with Standard Model (SM) gauge symmetry extended by several gauged abelian factors are discussed. The models are classified according to their hypercharge embeddings consistent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.Comment: 22 pages, 12 EPS figures, some clarifications/references adde

    Modular Weights, U(1)'s and Mass Matrices

    Get PDF
    We derive the scalar mass matrices in effective supergravity models augmented by a U(1)FU(1)_F family symmetry. Simple relations between U(1)FU(1)_F charges and modular weights of the superfields are derived and used to express the matrices with a minimum number of parameters. The model predicts a branching ratio for the μeγ\mu\to e\gamma process close to the present experimental limits.Comment: LaTex file, 11 pages, 1 Figure.Typos corrected and a reference has been added. Accepted in Phys. Lett.

    Gauge Unification and Quark Masses in a Pati-Salam Model from Branes

    Full text link
    We investigate the phase space of parameters in the Pati-Salam model derived in the context of D-branes scenarios, requiring low energy string scale. We find that a non-supersymmetric version complies with a string scale as low as 10 TeV, while in the supersymmetric version the string scale raises up to ~2 x 10^7 TeV. The limited energy region for RGE running demands a large tan(beta) in order to have experimentally acceptable masses for the top and bottom quarks.Comment: 11 pages, LaTeX, 7 figures include

    Gauge coupling flux thresholds, exotic matter and the unification scale in F-SU(5) GUT

    Full text link
    We explore the gauge coupling relations and the unification scale in F-theory SU(5) GUT broken down to the Standard Model by an internal U(1)Y gauge flux. We consider variants with exotic matter representations which may appear in these constructions and investigate their role in the effective field theory model. We make a detailed investigation on the conditions imposed on the extraneous matter to raise the unification scale and make the color triplets heavy in order to avoid fast proton decay. We also discuss in brief the implications on the gaugino masses.Comment: 20 pages, 3 figures, references and extended comments on KK thresholds effects adde

    Unification, KK-thresholds and the top Yukawa coupling in F-theory GUTs

    Full text link
    In a class of F-theory SU(5) GUTs the low energy chiral mass spectrum is obtained from rank one fermion mass textures with a hierarchical structure organised by U(1) symmetries embedded in the exceptional E_8 group. In these theories chiral fields reside on matter `curves' and the tree level masses are computed from integrals of overlapping wavefuctions of the particles at the triple intersection points. This calculation requires knowledge of the exact form of the wavefuctions. In this work we propose a way to obtain a reliable estimate of the various quantities which determine the strength of the Yukawa couplings. We use previous analysis of KK threshold effects to determine the (ratios of) heavy mass scales of the theory which are involved in the normalization of the wave functions. We consider similar effects from the chiral spectrum of these models and discuss possible constraints on the emerging matter content. In this approach, we find that the Yukawa couplings can be determined solely from the U(1) charges of the states in the `intersection' and the torsion which is a topological invariant quantity. We apply the results to a viable SU(5) model with minimal spectrum which satisfies all the constraints imposed by our analysis. We use renormalization group analysis to estimate the top and bottom masses and find that they are in agreement with the experimental values.Comment: 28 pages, 2 figure

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape
    corecore