700 research outputs found
VLT FORS2 comparative transmission spectroscopy: Detection of Na in the atmosphere of WASP-39b from the ground
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the
Very Large Telescope FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411–810 nm.
The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm
on a V = 12.1 mag star. We detect the sodium absorption feature (3.2σ) and find evidence of potassium. The
ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy,
supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great
potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we
obtained HST-quality light curves from the ground
Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble’s WFC3/UVIS G280 Grism
The ultraviolet–visible wavelength range holds critical spectral diagnostics for the chemistry and physics at work in planetary atmospheres. To date, time-series studies of exoplanets to characterize their atmospheres have relied on several combinations of modes on the Hubble Space Telescope's STIS/COS instruments to access this wavelength regime. Here for the first time, we apply the Hubble WFC3/UVIS G280 grism mode to obtain exoplanet spectroscopy from 200 to 800 nm in a single observation. We test the G280 grism mode on the hot Jupiter HAT-P-41b over two consecutive transits to determine its viability for the characterization of exoplanet atmospheres. We obtain a broadband transit depth precision of 29–33 ppm and a precision of on average 200 ppm in 10 nm spectroscopic bins. Spectral information from the G280 grism can be extracted from both the positive and negative first-order spectra, resulting in a 60% increase in the measurable flux. Additionally, the first Hubble Space Telescope orbit can be fully utilized in the time-series analysis. We present detailed extraction and reduction methods for use by future investigations with this mode, testing multiple techniques. We find the results to be fully consistent with STIS measurements of HAT-P-41b from 310 to 800 nm, with the G280 results representing a more observationally efficient and precise spectrum. HAT-P-41b's transmission spectrum is best fit with a model with T eq = 2091 K, high metallicity, and significant scattering and cloud opacity. With these first-of-their-kind observations, we demonstrate that WFC3/UVIS G280 is a powerful new tool to obtain UV–optical spectra of exoplanet atmospheres, adding to the UV legacy of Hubble and complementing future observations with the James Webb Space Telescope
HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b
We present results from the first observations of the Hubble Space Telescope
(HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for
WASP-101b, a highly inflated hot Jupiter and one of the community targets
proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS)
program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that
the near-infrared transmission spectrum of WASP-101b contains no significant
HO absorption features and we rule out a clear atmosphere at 13{\sigma}.
Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at
observing strong molecular transmission features. We compare WASP-101b to the
well studied and nearly identical hot Jupiter WASP-31b. These twin planets show
similar temperature-pressure profiles and atmospheric features in the
near-infrared. We suggest exoplanets in the same parameter space as WASP-101b
and WASP-31b will also exhibit cloudy transmission spectral features. For
future HST exoplanet studies, our analysis also suggests that a lower count
limit needs to be exceeded per pixel on the detector in order to avoid unwanted
instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ
Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble’s WFC3/UVIS G280 Grism
The ultraviolet–visible wavelength range holds critical spectral diagnostics for the chemistry and physics at work in planetary atmospheres. To date, time-series studies of exoplanets to characterize their atmospheres have relied on several combinations of modes on the Hubble Space Telescope's STIS/COS instruments to access this wavelength regime. Here for the first time, we apply the Hubble WFC3/UVIS G280 grism mode to obtain exoplanet spectroscopy from 200 to 800 nm in a single observation. We test the G280 grism mode on the hot Jupiter HAT-P-41b over two consecutive transits to determine its viability for the characterization of exoplanet atmospheres. We obtain a broadband transit depth precision of 29–33 ppm and a precision of on average 200 ppm in 10 nm spectroscopic bins. Spectral information from the G280 grism can be extracted from both the positive and negative first-order spectra, resulting in a 60% increase in the measurable flux. Additionally, the first Hubble Space Telescope orbit can be fully utilized in the time-series analysis. We present detailed extraction and reduction methods for use by future investigations with this mode, testing multiple techniques. We find the results to be fully consistent with STIS measurements of HAT-P-41b from 310 to 800 nm, with the G280 results representing a more observationally efficient and precise spectrum. HAT-P-41b's transmission spectrum is best fit with a model with T eq = 2091 K, high metallicity, and significant scattering and cloud opacity. With these first-of-their-kind observations, we demonstrate that WFC3/UVIS G280 is a powerful new tool to obtain UV–optical spectra of exoplanet atmospheres, adding to the UV legacy of Hubble and complementing future observations with the James Webb Space Telescope
Radial velocity eclipse mapping of exoplanets
Planetary rotation rates and obliquities provide information regarding the
history of planet formation, but have not yet been measured for evolved
extrasolar planets. Here we investigate the theoretical and observational
perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse)
ingress and egress for transiting exoplanets. Near secondary eclipse, when the
planet passes behind the parent star, the star sequentially obscures light from
the approaching and receding parts of the rotating planetary surface. The
temporal block of light emerging from the approaching (blue-shifted) or
receding (red-shifted) parts of the planet causes a temporal distortion in the
planet's spectral line profiles resulting in an anomaly in the planet's radial
velocity curve. We demonstrate that the shape and the ratio of the
ingress-to-egress radial velocity amplitudes depends on the planetary
rotational rate, axial tilt and impact factor (i.e. sky-projected planet
spin-orbital alignment). In addition, line asymmetries originating from
different layers in the atmosphere of the planet could provide information
regarding zonal atmospheric winds and constraints on the hot spot shape for
giant irradiated exoplanets. The effect is expected to be most-pronounced at
near-infrared wavelengths, where the planet-to-star contrasts are large. We
create synthetic near-infrared, high-dispersion spectroscopic data and
demonstrate how the sky-projected spin axis orientation and equatorial velocity
of the planet can be estimated. We conclude that the RMse effect could be a
powerful method to measure exoplanet spins.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ on 2015
June 1
Detection of H2O and evidence for TiO/VO in an ultra hot exoplanet atmosphere
This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this recordWe present a primary transit observation for the ultra hot (Teq 2400 K) gas giant expolanetWASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12{1.64 m wavelength range. The 1.4 m water absorption band is detected at high con dence (5:4 ) in the planetary atmosphere. We also reanalyze ground-based photometric lightcurves taken in the B, r0, and z0 lters. Signi cantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this di erence, and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1:12{1:3 m wavelength range, possibly due to iron hydride absorption. If con rmed, WASP-121b will be the rst exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs, and their presence is likely to have a signi cant e ect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversionThe research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Program (FP7/2007-2013) ERC grant agreement no. 336792
System modelling of very low Earth orbit satellites for Earth observation
The operation of satellites in very low Earth orbit (VLEO) has been linked to a variety of benefits to both the spacecraft platform and mission design. Critically, for Earth observation (EO) missions a reduction in altitude can enable smaller and less powerful payloads to achieve the same performance as larger instruments or sensors at higher altitude, with significant benefits to the spacecraft design. As a result, renewed interest in the exploitation of these orbits has spurred the development of new technologies that have the potential to enable sustainable operations in this lower altitude range. In this paper, system models are developed for (i) novel materials that improve aerodynamic performance enabling reduced drag or increased lift production and resistance to atomic oxygen erosion and (ii) atmosphere-breathing electric propulsion (ABEP) for sustained drag compensation or mitigation in VLEO. Attitude and orbit control methods that can take advantage of the aerodynamic forces and torques in VLEO are also discussed. These system models are integrated into a framework for concept-level satellite design and this approach is used to explore the system-level trade-offs for future EO spacecraft enabled by these new technologies. A case-study presented for an optical very-high resolution spacecraft demonstrates the significant potential of reducing orbital altitude using these technologies and indicates possible savings of up to 75% in system mass and over 50% in development and manufacturing costs in comparison to current state-of-the-art missions. For a synthetic aperture radar (SAR) satellite, the reduction in mass and cost with altitude were shown to be smaller, though it was noted that currently available cost models do not capture recent commercial advancements in this segment. These results account for the additional propulsive and power requirements needed to sustain operations in VLEO and indicate that future EO missions could benefit significantly by operating in this altitude range. Furthermore, it is shown that only modest advancements in technologies already under development may begin to enable exploitation of this lower altitude range. In addition to the upstream benefits of reduced capital expense and a faster return on investment, lower costs and increased access to high quality observational data may also be passed to the downstream EO industry, with impact across a wide range of commercial, societal, and environmental application areas
- …