38 research outputs found

    Shape invariant hypergeometric type operators with application to quantum mechanics

    Full text link
    A hypergeometric type equation satisfying certain conditions defines either a finite or an infinite system of orthogonal polynomials. The associated special functions are eigenfunctions of some shape invariant operators. These operators can be analysed together and the mathematical formalism we use can be extended in order to define other shape invariant operators. All the considered shape invariant operators are directly related to Schrodinger type equations.Comment: More applications available at http://fpcm5.fizica.unibuc.ro/~ncotfa

    Icosahedral multi-component model sets

    Full text link
    A quasiperiodic packing Q of interpenetrating copies of C, most of them only partially occupied, can be defined in terms of the strip projection method for any icosahedral cluster C. We show that in the case when the coordinates of the vectors of C belong to the quadratic field Q[\sqrt{5}] the dimension of the superspace can be reduced, namely, Q can be re-defined as a multi-component model set by using a 6-dimensional superspace.Comment: 7 pages, LaTeX2e in IOP styl

    On the linear representations of the symmetry groups of single-wall carbon nanotubes

    Full text link
    The positions of atoms forming a carbon nanotube are usually described by using a system of generators of the symmetry group. Each atomic position corresponds to an element of the set Z x {0,1,...,n} x {0,1}, where n depends on the considered nanotube. We obtain an alternate rather different description by starting from a three-axes description of the honeycomb lattice. In our mathematical model, which is a factor space defined by an equivalence relation in the set {(v_0,v_1,v_2)\in Z^3 | v_0+v_1+v_2\in {0,1}}, the neighbours of an atomic position can be described in a simpler way, and the mathematical objects with geometric or physical significance have a simpler and more symmetric form. We present some results concerning the linear representations of single-wall carbon nanotubes in order to illustrate the proposed approach.Comment: Major change of content. More details will be available at http://fpcm5.fizica.unibuc.ro/~ncotfa

    Symmetry properties of Penrose type tilings

    Full text link
    The Penrose tiling is directly related to the atomic structure of certain decagonal quasicrystals and, despite its aperiodicity, is highly symmetric. It is known that the numbers 1, −τ-\tau , (−τ)2(-\tau)^2, (−τ)3(-\tau)^3, ..., where τ=(1+5)/2\tau =(1+\sqrt{5})/2, are scaling factors of the Penrose tiling. We show that the set of scaling factors is much larger, and for most of them the number of the corresponding inflation centers is infinite.Comment: Paper submitted to Phil. Mag. (for Proceedings of Quasicrystals: The Silver Jubilee, Tel Aviv, 14-19 October, 2007

    Properties of finite Gaussians and the discrete-continuous transition

    Full text link
    Weyl's formulation of quantum mechanics opened the possibility of studying the dynamics of quantum systems both in infinite-dimensional and finite-dimensional systems. Based on Weyl's approach, generalized by Schwinger, a self-consistent theoretical framework describing physical systems characterised by a finite-dimensional space of states has been created. The used mathematical formalism is further developed by adding finite-dimensional versions of some notions and results from the continuous case. Discrete versions of the continuous Gaussian functions have been defined by using the Jacobi theta functions. We continue the investigation of the properties of these finite Gaussians by following the analogy with the continuous case. We study the uncertainty relation of finite Gaussian states, the form of the associated Wigner quasi-distribution and the evolution under free-particle and quantum harmonic oscillator Hamiltonians. In all cases, a particular emphasis is put on the recovery of the known continuous-limit results when the dimension dd of the system increases.Comment: 21 pages, 4 figure

    Gazeau-Klauder type coherent states for hypergeometric type operators

    Full text link
    The hypergeometric type operators are shape invariant, and a factorization into a product of first order differential operators can be explicitly described in the general case. Some additional shape invariant operators depending on several parameters are defined in a natural way by starting from this general factorization. The mathematical properties of the eigenfunctions and eigenvalues of the operators thus obtained depend on the values of the involved parameters. We study the parameter dependence of orthogonality, square integrability and of the monotony of eigenvalue sequence. The obtained results allow us to define certain systems of Gazeau-Klauder coherent states and to describe some of their properties. Our systematic study recovers a number of well-known results in a natural unified way and also leads to new findings.Comment: An error occurring in Theorem 12 and Theorem 13 has been correcte

    A search on the Nikiforov-Uvarov formalism

    Full text link
    An alternative treatment is proposed for the calculations carried out within the frame of Nikiforov-Uvarov method, which removes a drawback in the original theory and by pass some difficulties in solving the Schrodinger equation. The present procedure is illustrated with the example of orthogonal polynomials. The relativistic extension of the formalism is discussed.Comment: 10 page

    On the Spectrum of Field Quadratures for a Finite Number of Photons

    Full text link
    The spectrum and eigenstates of any field quadrature operator restricted to a finite number NN of photons are studied, in terms of the Hermite polynomials. By (naturally) defining \textit{approximate} eigenstates, which represent highly localized wavefunctions with up to NN photons, one can arrive at an appropriate notion of limit for the spectrum of the quadrature as NN goes to infinity, in the sense that the limit coincides with the spectrum of the infinite-dimensional quadrature operator. In particular, this notion allows the spectra of truncated phase operators to tend to the complete unit circle, as one would expect. A regular structure for the zeros of the Christoffel-Darboux kernel is also shown.Comment: 16 pages, 11 figure

    Weak mutually unbiased bases

    Full text link
    Quantum systems with variables in Z(d){\mathbb Z}(d) are considered. The properties of lines in the Z(d)×Z(d){\mathbb Z}(d)\times {\mathbb Z}(d) phase space of these systems, are studied. Weak mutually unbiased bases in these systems are defined as bases for which the overlap of any two vectors in two different bases, is equal to d−1/2d^{-1/2} or alternatively to one of the di−1/2,0d_i^{-1/2},0 (where did_i is a divisor of dd apart from d,1d,1). They are designed for the geometry of the Z(d)×Z(d){\mathbb Z}(d)\times {\mathbb Z}(d) phase space, in the sense that there is a duality between the weak mutually unbiased bases and the maximal lines through the origin. In the special case of prime dd, there are no divisors of dd apart from 1,d1,d and the weak mutually unbiased bases are mutually unbiased bases
    corecore