92 research outputs found

    Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_{x}CuO4_4

    Get PDF
    The electrical resistivity ρ\rho and Hall coefficient RH_H of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to H=37.5H = 37.5 T, large enough to access the normal state at T→0T \to 0, for closely spaced dopings pp across the pseudogap critical point at p⋆=0.235p^\star = 0.235. Below p⋆p^\star, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing pp. Taken together, these upturns show that the normal-state carrier density nn at T=0T = 0 drops upon entering the pseudogap phase. Quantitatively, it goes from n=1+pn = 1 + p at p=0.24p = 0.24 to n=pn = p at p=0.20p = 0.20. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby RH_H responds more slowly than ρ\rho to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval 0.2<p<p⋆0.2 < p < p^\star, with compensating contributions to RH_H. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from 1+p1 + p to pp is a universal signature of the pseudogap transition at T=0T=0. We discuss the implication of these findings for the nature of the pseudogap phase.Comment: 11 pages, 12 figure

    Hall, Seebeck, and Nernst Coefficients of Underdoped HgBa2CuO4+d: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor

    Full text link
    Charge density-wave order has been observed in cuprate superconductors whose crystal structure breaks the square symmetry of the CuO2 planes, such as orthorhombic YBa2Cu3Oy (YBCO), but not so far in cuprates that preserve that symmetry, such as tetragonal HgBa2CuO4+d (Hg1201). We have measured the Hall (R_H), Seebeck (S), and Nernst coefficients of underdoped Hg1201 in magnetic fields large enough to suppress superconductivity. The high-field R_H(T) and S(T) are found to drop with decreasing temperature and become negative, as also observed in YBCO at comparable doping. In YBCO, the negative R_H and S are signatures of a small electron pocket caused by Fermi-surface reconstruction, attributed to charge density-wave modulations observed in the same range of doping and temperature. We deduce that a similar Fermi-surface reconstruction takes place in Hg1201, evidence that density-wave order exists in this material. A striking similarity is also found in the normal-state Nernst coefficient, further supporting this interpretation. Given the model nature of Hg1201, Fermi-surface reconstruction appears to be common to all hole-doped cuprates, suggesting that density-wave order is a fundamental property of these materials

    New specimens of the basal ornithischian dinosaur Lesothosaurus diagnosticus Galton, 1978 from the Early Jurassic of South Africa

    Get PDF
    We describe new specimens of the basal ornithischian dinosaur Lesothosaurus diagnosticus Galton, 1978 collected from a bone bed in the Fouriesburg district of the Free State, South Africa. The material was collected from the upper Elliot Formation (Early Jurassic) and represents the remains of at least three different individuals. These individuals are larger in body size than those already known in museum collections and offer additional information on cranial ontogeny in the taxon. Moreover, they are similar in size to the sympatric taxon Stormbergia dangershoeki. The discovery of three individuals at this locality might imply group-living behaviour in this early ornithischian

    Dental anatomy of the apex predator Sinraptor Dongi (Theropoda: Allosauroidea) from the late Jurassic of China

    Get PDF
    The dental morphology of the holotype of the theropod Sinraptor dongi from the Jurassic Shishugou Formation of China is comprehensively described. We highlight a combination of dental features that appear to be restricted to Sinraptor: (i) crowns with denticulated mesial and distal carinae extending from the root and an irregular surface texture on the enamel; (ii) a D- to salinon-shaped cross-sectional outline at the crown base in mesialmost teeth; (iii) mesial crowns with mesial carinae spiraling mesiolingually and lingually positioned longitudinal groove adjacent to the mesial carina; and (iv) particularly labiolingually compressed lateral teeth with weakly labially deflected distal carinae, flat to concave basocentral surfaces of the labial margins of the crowns, and horizontally elongated distal denticles showing short to well-developed interdenticular sulci. Using cladistic, multivariate, discriminant, and cluster analyses, we demonstrate that the dentition of Sinraptor is relatively similar to that of ceratosaurids, megalosauroids, and other allosauroids and is particularly close to that of Allosaurus. The dental anatomy of Sinraptor and Allosaurus, which differs mainly in the labiolingual compression of the lateral crowns and in the number of premaxillary teeth, shows adaptations towards a predatory lifestyle, including premaxillary teeth capable of enduring tooth-tobone contact and crowns with widely separated mesial and distal carinae capable of inflicting widely open wounds.Fil: Hendrickx, Christophe Marie Fabian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - TucumĂĄn. Unidad Ejecutora Lillo; ArgentinaFil: Stiegler, Josef. The George Washington University; Estados UnidosFil: Currie, Philip J.. University of Alberta; CanadĂĄFil: Han, Fenglu. University of Geoscience; ChinaFil: Xu, Xing. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Choiniere, Jonah N.. University of the Witwatersrand; SudĂĄfricaFil: Wu, Xiao Chung. Canadian Museum of Nature; Canad

    A CT-based revised description and phylogenetic analysis of the skull of the basal maniraptoran Ornitholestes hermanni Osborn 1903

    Get PDF
    Ornitholestes hermanni was one of the first small-bodiedtheropods named in the 1900s. It is known from a singlespecimen discovered during the American MuseumExpedition of 1900, at the Jurassic Morrison Formationsite known as Bone Cabin Quarry, in Wyoming. It haslong been a critical taxon in understanding the evolutionof the Coelurosauria, the clade that includestyrannosauroids, living birds, and their commonancestors. The holotype specimen comprises a nearlycomplete skull and most of a postcranial skeleton. Despitethis abundant material, its precise phylogeneticrelationships have been difficult to determine. This is inpart due to the intense mediolateral crushing of the skulland the relatively generalized postcranial anatomy. Herewe present the results of a micro- computed tomographybasedinvestigation of the cranial anatomy and subsequentincorporation of these data into a phylogenetic data matrixdesigned to test coelurosaurian interrelationships. We findrobust evidence across different optimality criteria thatOrnitholestes is the earliest-branching oviraptorosaurianspecies. Using parsimony as an optimality criterion, thisphylogenetic position is supported by 14 unambiguoussynapomorphies, including: a short frontal process of thepostorbital; short, deep, and pendant paroccipitalprocesses; a large mandibular foramen; an anterodorsallyoriented dentary symphysis; a surangular that is longerthan the dentary; short maxillary and dentary tooth rows;and procumbent dentary and premaxillary teeth. UsingBayesian fossilized birth-death models, we find highposterior probabilities (>.99) that Ornitholestes is theearliest-branching oviraptorosaurian species. Weadditionally find strong support in both analyses that thesuperficially bat-like and possibly arborealscansoriopterygids are an early branching lineage withinOviraptorosauria. This new phylogenetic position fills in apersistent ghost lineage in Oviraptorosauria and confirmsthat scansoriopterygids are basally branchingoviraptorosaurians that represent an independent origin ofaerial habits, separate from those of dromaeosaurs andavialans.Fil: Chapelle, Kimberley E.. American Museum of Natural History; Estados UnidosFil: Norell, Mark. American Museum of Natural History; Estados UnidosFil: Ford, David P.. University of the Witwatersrand; SudĂĄfricaFil: Hendrickx, Christophe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - TucumĂĄn. Unidad Ejecutora Lillo; ArgentinaFil: Radermacher, Viktor J.. University of Minnesota; Estados UnidosFil: Balanoff, Amy. University Johns Hopkins; Estados UnidosFil: Zanno, Lindsay E.. North Carolina Museum of Natural Sciences; Estados UnidosFil: Choiniere, Jonah N.. University of the Witwatersrand; SudĂĄfrica81st Annual Meeting of the Society of Vertebrate PaleontologyMc LeanEstados UnidosSociety of Vertebrate Paleontolog

    Science, evolution and natural selection: in praise of Darwin at the Stazione Zoologica Anton Dohrn of Naples

    Full text link
    Copernicus, Galileo, Newton and other physical scientists ushered in a conception of the universe as matter in motion governed by natural laws. Their discoveries brought about a fundamental revolution, namely a commitment to the postulate that the universe obeys immanent laws that can account for natural phenomena. The workings of the universe were brought into the realm of science: explanation through natural laws. Darwin completed the Copernican revolution by extending it to the living world. Darwin demonstrated the evolution of organisms. More important yet is that he discovered natural selection, the process that explains the 'design' of organisms. The adaptations and diversity of organisms, the origin of novel and complex species, even the origin of mankind, could now be explained by an orderly process of change governed by natural laws. The origin of species and the exquisite features of organisms had previously been explained as special creations of an omniscient God. Darwin brought them into the domain of science

    Direct measurement of the upper critical field in a cuprate superconductor

    Get PDF
    The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.Comment: to appear in Nature Communications; Supplementary Information file available upon reques

    Nernst Effect of stripe ordering La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4

    Full text link
    We investigate the transport properties of La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4 (x=0.04x=0.04, 0.08, 0.125, 0.15, 0.2) with a special focus on the Nernst effect in the normal state. Various anomalous features are present in the data. For x=0.125x=0.125 and 0.15 a kink-like anomaly is present in the vicinity of the onset of charge stripe order in the LTT phase, suggestive of enhanced positive quasiparticle Nernst response in the stripe ordered phase. At higher temperature, all doping levels except x=0.2x=0.2 exhibit a further kink anomaly in the LTO phase which cannot unambiguously be related to stripe order. Moreover, a direct comparison between the Nernst coefficients of stripe ordering La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4 and superconducting La2−x_{2-x}Srx_xCuO4_4 at the doping levels x=0.125x=0.125 and x=0.15x=0.15 reveals only weak differences. Our findings make high demands on any scenario interpreting the Nernst response in hole-doped cuprates
    • 

    corecore