5,252 research outputs found

    Chemical Abundances of the Milky Way Thick Disk and Stellar Halo I.: Implications of [alpha/Fe] for Star Formation Histories in Their Progenitors

    Full text link
    We present the abundance analysis of 97 nearby metal-poor (-3.3<[Fe/H]<-0.5) stars having kinematics characteristics of the Milky Way (MW) thick disk, inner, and outer stellar halos. The high-resolution, high-signal-to-noise optical spectra for the sample stars have been obtained with the High Dispersion Spectrograph mounted on the Subaru Telescope. Abundances of Fe, Mg, Si, Ca and Ti have been derived using a one-dimensional LTE abundance analysis code with Kurucz NEWODF model atmospheres. By assigning membership of the sample stars to the thick disk, inner or outer halo components based on their orbital parameters, we examine abundance ratios as a function of [Fe/H] and kinematics for the three subsamples in wide metallicity and orbital parameter ranges. We show that, in the metallicity range of -1.5<[Fe/H]<= -0.5, the thick disk stars show constantly high mean [Mg/Fe] and [Si/Fe] ratios with small scatter. In contrast, the inner, and the outer halo stars show lower mean values of these abundance ratios with larger scatter. The [Mg/Fe], [Si/Fe] and [Ca/Fe] for the inner and the outer halo stars also show weak decreasing trends with [Fe/H] in the range [Fe/H]>−2>-2. These results favor the scenarios that the MW thick disk formed through rapid chemical enrichment primarily through Type II supernovae of massive stars, while the stellar halo has formed at least in part via accretion of progenitor stellar systems having been chemically enriched with different timescales.Comment: Accepted for publication in Ap

    Properties of hadron and quark matter studied with a molecular dynamics

    Full text link
    We study the hadron-quark phase transition in a molecular dynamics (MD) of quark degrees of freedom. The hadron state at low density and temperature, and the deconfined quark state at high density and temperature are observed in our model. We investigate the equations of state and draw the phase-diagram at wide baryon density and temperature range. We also discuss the transport property, e.g. viscosity, of qqˉq\bar{q} matter. It is found that the ratio of the shear viscosity to the entropy density is less than one for quark matter.Comment: Poster presentation at Quark Matter 200

    Kaon Condensation and the Non-Uniform Nuclear Matter

    Full text link
    Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear ``pastas'') and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.Comment: Presented at "Tours Symposium on Nuclear Physics V

    Coulomb screening effect on the nuclear-pasta structure

    Full text link
    Using the density functional theory (DFT) with the relativistic mean field (RMF) model, we study the non-uniform state of nuclear matter, ``nuclear pasta''. We self-consistently include the Coulomb interaction together with other interactions. It is found that the Coulomb screening effect is significant for each pasta structure but not for the bulk equation of state (EOS) of the nuclear pasta phase

    Mott Relation for Anomalous Hall and Nernst effects in Ga1-xMnxAs Ferromagnetic Semiconductors

    Full text link
    The Mott relation between the electrical and thermoelectric transport coefficients normally holds for phenomena involving scattering. However, the anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit interaction. In this work, we have simultaneously measured AHE and the anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films, and observed an exceptionally large ANE at zero magnetic field. We further show that AHE and ANE share a common origin and demonstrate the validity of the Mott relation for the anomalous transport phenomena

    Fast Quasi-Threshold Editing

    Full text link
    We introduce Quasi-Threshold Mover (QTM), an algorithm to solve the quasi-threshold (also called trivially perfect) graph editing problem with edge insertion and deletion. Given a graph it computes a quasi-threshold graph which is close in terms of edit count. This edit problem is NP-hard. We present an extensive experimental study, in which we show that QTM is the first algorithm that is able to scale to large real-world graphs in practice. As a side result we further present a simple linear-time algorithm for the quasi-threshold recognition problem.Comment: 26 pages, 4 figures, submitted to ESA 201

    Quasi-reversible Magnetoresistance in Exchange Spring Tunnel Junctions

    Full text link
    We report a large, quasi-reversible tunnel magnetoresistance in exchange-biased ferromagnetic semiconductor tunnel junctions wherein a soft ferromagnetic semiconductor (\gma) is exchange coupled to a hard ferromagnetic metal (MnAs). Our observations are consistent with the formation of a region of inhomogeneous magnetization (an "exchange spring") within the biased \gma layer. The distinctive tunneling anisotropic magnetoresistance of \gma produces a pronounced sensitivity of the magnetoresistance to the state of the exchange spring
    • …
    corecore