228 research outputs found

    Neutron star crust beyond the Wigner-Seitz approximation

    Full text link
    For more than three decades, the inner crust of neutron stars, formed of a solid lattice of nuclear clusters coexisting with a gas of electrons and neutrons, has been traditionally studied in the Wigner-Seitz approximation. The validity of this approximation is discussed in the general framework of the band theory of solids, which has been recently applied to the nuclear context. Using this novel approach, it is shown that the unbound neutrons move in the crust as if their mass was increased.Comment: 8 pages, 2 figures. Proceedings of the International Symposium on Exotic States of Nuclear Matter, Catania (Italy), June 11-15, 200

    Constraint on the internal structure of a neutron star from Vela pulsar glitches

    Full text link
    Pulsars are spinning extremely rapidly with periods as short as about 1.41.4 milliseconds and delays of a few milliseconds per year at most, thus providing the most accurate clocks in the Universe. Nevertheless, sudden spin ups have been detected in some pulsars like the emblematic Vela pulsar. These abrupt changes in the pulsar's rotation period have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of neutron stars. However, the neutron superfluid has been recently found to be so strongly coupled to the crust that it does not carry enough angular momentum to explain the Vela data. We explore the extent to which pulsar-timing observations can be reconciled with the standard glitch theory considering the lack of knowledge of the dense-matter equation of state.Comment: Proceedings of the conference "The Modern Physics of Compact Stars 2015" held in Erevan, Armenia, from 30 September 2015 to 3 October 2015. To appear in Proceedings of Scienc

    Self-interaction errors in nuclear energy density functionals

    Full text link
    When applied to a single nucleon, nuclear energy density functionals may yield a non-vanishing internal energy thus implying that the nucleon is interacting with itself. It is shown how to avoid this unphysical feature for semi-local phenomenological functionals containing all possible bilinear combinations of local densities and currents up to second order in the derivatives. The method outlined in this Rapid Communication could be easily extended to functionals containing higher order terms, and could serve as a guide for constraining the time-odd part of the functional

    Superfluidity and entrainment in neutron-star crusts

    Full text link
    Despite the absence of viscous drag, the neutron superfluid permeating the inner crust of a neutron star can still be strongly coupled to nuclei due to non-dissipative entrainment effects. Neutron superfluidity and entrainment have been systematically studied in all regions of the inner crust of a cold non-accreting neutron star in the framework of the band theory of solids. It is shown that in the intermediate layers of the inner crust a large fraction of "free" neutrons are actually entrained by the crust. The results suggest that a revision of the interpretation of many observable astrophysical phenomena might be necessary.Comment: 4 pages, to appear in the proceedings of the ERPM conference, Zielona Gora, Poland, April 201

    Pairing: from atomic nuclei to neutron-star crusts

    Full text link
    Nuclear pairing is studied both in atomic nuclei and in neutron-star crusts in the unified framework of the energy-density functional theory using generalized Skyrme functionals complemented with a local pairing functional obtained from many-body calculations in homogeneous nuclear matter using realistic forces.Comment: 16 pages, 3 figures. Contribution for the book "50 years of nuclear BCS", edited by R.A. Broglia and V. Zelevinsk

    Superfluid dynamics in neutron star crusts

    Full text link
    A simple description of superfluid hydrodynamics in the inner crust of a neutron star is given. Particular attention is paid to the effect of the lattice of nuclei on the properties of the superfluid neutrons, and the effects of entrainment, the fact that some fraction of the neutrons are locked to the motion of the protons in nuclei

    Neutron drip transition in accreting and nonaccreting neutron star crusts

    Full text link
    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density ρdrip\rho_\textrm{drip}. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.Comment: 24 pages, accepted for publication in Physical Review

    Symmetry energy: nuclear masses and neutron stars

    Full text link
    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30 MeV for the symmetry coefficient J, the corresponding root-mean square deviation being 0.549 MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated {\it ab initio} our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.Comment: 10 pages, 9 figures, to appear in EPJA special volume on symmetry energ

    Breathing-mode measurements in Sn isotopes and isospin dependence of nuclear incompressibility

    Full text link
    T. Li {\it et al.}[Phys. Rev. C {\bf 81}, 034309 (2010)] have analyzed their measured breathing-mode energies of some tin isotopes in terms of a first-order leptodermous expansion, and find for the symmetry-incompressibility coefficient KτK_{\tau} the value of -550 ±\pm 100 MeV. Removing an approximation that they made, we find that the first-order estimate of KτK_{\tau} shifts to -661 ±\pm 144 MeV. However, taking into account higher-order terms in the leptodermous expansion shows that the data are compatible with the significantly lower magnitudes indicated by both another experiment and some theoretical estimates.Comment: 6 pages, 1 figur
    corecore