195 research outputs found

    Hyperbolic Metamaterial Resonator-Antenna Scheme for Large, Broadband Emission Enhancement and Single Photon Collection

    Full text link
    We model the broadband enhancement of single-photon emission from color centres in silicon carbide nanocrystals coupled to a planar hyperbolic metamaterial, HMM resonator. The design is based on positioning the single photon emitters within the HMM resonator, made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the lossy Fabry Perot structure modes arising within the high-index HMM cavity. To capture this broadband enhancement in the single photon emitters spontaneous emission, we placed a simple gold based cylindrical antenna on top of the HMM resonator. We analyzed the performance of this HMM coupled antenna structure in terms of the Purcell enhancement, quantum efficiency, collection efficiency and overall collected photon rate. For perpendicular dipole orientation relative to the interface, the HMM coupled antenna resonator leads to a significantly large spontaneous emission enhancement with Purcell factor of the order of 250 along with a very high average total collected photon rate, CPR of about 30 over a broad emission spectrum, 700 nm to 1000 nm. The peak CPR increases to about 80 at 900 nm, corresponding to the emission of silicon-carbide quantum emitters. This is a state of the art improvement considering the previous computational designs have reported a maximum average CPR of 25 across the nitrogen-vacancy centre emission spectrum, 600 nm to 800 nm with the highest value being about 40 at 650 nm

    Optimizing single-photon-source heralding efficiency at 1550 nm using periodically poled lithium niobate

    Full text link
    We explore the feasibility of using high conversion-efficiency periodically-poled crystals to produce photon pairs for photon-counting detector calibrations at 1550 nm. The goal is the development of an appropriate parametric down-conversion (PDC) source at telecom wavelengths meeting the requirements of high-efficiency pair production and collection in single spectral and spatial modes (single-mode fibers). We propose a protocol to optimize the photon collection, noise levels and the uncertainty evaluation. This study ties together the results of our efforts to model the single-mode heralding efficiency of a two-photon PDC source and to estimate the heralding uncertainty of such a source.Comment: 14 pages, 2 tables and 3 figures, final version accepted by Metrologi

    Towards achieving strong coupling in 3D-cavity with solid state spin resonance

    Full text link
    We investigate the microwave magnetic field confinement in several microwave 3D-cavities, using 3D finite-element analysis to determine the best design and achieve strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using 1D superconducting cavities with small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters.Comment: 20 pages, 9 figure

    Quantum and Classical Noise in Practical Quantum Cryptography Systems based on polarization-entangled photons

    Full text link
    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how ideal polarization entanglement in spontaneous parametric downconversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Because all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up the overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.Comment: Rev Tex Style, 2 columns, 7 figures, (a modified version will appear on PRA

    Single-photon emitting diode in silicon carbide

    Full text link
    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >>300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6 figure

    A silicon carbide room temperature single-photon source

    Get PDF
    Over the past few years, single-photon generation has been realized in numerous systems: single molecules 1 , quantum dots 2-4 , diamond colour centres 5 and others 6 . The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics 7 and measurement theory 8 . An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing 9 . Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite- vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (210 6 counts s 1 ) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices 9

    Addressing a single NV−^{-} spin with a macroscopic dielectric microwave cavity

    Full text link
    We present a technique for addressing single NV−^{-} center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single NV−^{-} center in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV−^{-} major axis in a straightforward manner

    Reduced Deadtime and Higher Rate Photon-Counting Detection using a Multiplexed Detector Array

    Full text link
    We present a scheme for a photon-counting detection system that can be operated at incident photon rates higher than otherwise possible by suppressing the effects of detector deadtime. The method uses an array of N detectors and a 1-by-N optical switch with a control circuit to direct input light to live detectors. Our calculations and models highlight the advantages of the technique. In particular, using this scheme, a group of N detectors provides an improvement in operation rate that can exceed the improvement that would be obtained by a single detector with deadtime reduced by 1/N, even if it were feasible to produce a single detector with such a large improvement in deadtime. We model the system for continuous and pulsed light sources, both of which are important for quantum metrology and quantum key distribution applications.Comment: 6 figure
    • …
    corecore