13 research outputs found
Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes
Long-term camera re-localization is an important task with numerous computer
vision and robotics applications. Whilst various outdoor benchmarks exist that
target lighting, weather and seasonal changes, far less attention has been paid
to appearance changes that occur indoors. This has led to a mismatch between
popular indoor benchmarks, which focus on static scenes, and indoor
environments that are of interest for many real-world applications. In this
paper, we adapt 3RScan - a recently introduced indoor RGB-D dataset designed
for object instance re-localization - to create RIO10, a new long-term camera
re-localization benchmark focused on indoor scenes. We propose new metrics for
evaluating camera re-localization and explore how state-of-the-art camera
re-localizers perform according to these metrics. We also examine in detail how
different types of scene change affect the performance of different methods,
based on novel ways of detecting such changes in a given RGB-D frame. Our
results clearly show that long-term indoor re-localization is an unsolved
problem. Our benchmark and tools are publicly available at
waldjohannau.github.io/RIO10Comment: ECCV 2020, project website https://waldjohannau.github.io/RIO1
Generic node removal for factor-graph SLAM
This paper reports on a generic factor-based method for node removal in factor-graph simultaneous localization and mapping (SLAM), which we call generic linear constraints (GLCs). The need for a generic node removal tool is motivated by long-term SLAM applications, whereby nodes are removed in order to control the computational cost of graph optimization. GLC is able to produce a new set of linearized factors over the elimination clique that can represent either the true marginalization (i.e., dense GLC) or a sparse approximation of the true marginalization using a Chow-Liu tree (i.e., sparse GLC). The proposed algorithm improves upon commonly used methods in two key ways: First, it is not limited to graphs with strictly full-state relative-pose factors and works equally well with other low-rank factors, such as those produced by monocular vision. Second, the new factors are produced in such a way that accounts for measurement correlation, which is a problem encountered in other methods that rely strictly upon pairwise measurement composition. We evaluate the proposed method over multiple real-world SLAM graphs and show that it outperforms other recently proposed methods in terms of Kullback–Leibler divergence. Additionally, we experimentally demonstrate that the proposed GLC method provides a principled and flexible tool to control the computational complexity of long-term graph SLAM, with results shown for 34.9 h of real-world indoor–outdoor data covering 147.4 km collected over 27 mapping sessions spanning a period of 15 months.Nicholas Carlevaris-Bianco, Michael Kaess, and Ryan M. Eustic
Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle
Abstract not availablePaul Ozog, Nicholas Carlevaris-Bianco, Ayoung Kim, Ryan M. Eustic
Beyond Controlled Environments: 3D Camera Re-localization in Changing Indoor Scenes
Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan – a recently introduced indoor RGB-D dataset designed for object instance re-localization – to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at https://www.waldjohannau.github.io/RIO10