13 research outputs found

    Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes

    Full text link
    Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan - a recently introduced indoor RGB-D dataset designed for object instance re-localization - to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at waldjohannau.github.io/RIO10Comment: ECCV 2020, project website https://waldjohannau.github.io/RIO1

    Generic node removal for factor-graph SLAM

    No full text
    This paper reports on a generic factor-based method for node removal in factor-graph simultaneous localization and mapping (SLAM), which we call generic linear constraints (GLCs). The need for a generic node removal tool is motivated by long-term SLAM applications, whereby nodes are removed in order to control the computational cost of graph optimization. GLC is able to produce a new set of linearized factors over the elimination clique that can represent either the true marginalization (i.e., dense GLC) or a sparse approximation of the true marginalization using a Chow-Liu tree (i.e., sparse GLC). The proposed algorithm improves upon commonly used methods in two key ways: First, it is not limited to graphs with strictly full-state relative-pose factors and works equally well with other low-rank factors, such as those produced by monocular vision. Second, the new factors are produced in such a way that accounts for measurement correlation, which is a problem encountered in other methods that rely strictly upon pairwise measurement composition. We evaluate the proposed method over multiple real-world SLAM graphs and show that it outperforms other recently proposed methods in terms of Kullback–Leibler divergence. Additionally, we experimentally demonstrate that the proposed GLC method provides a principled and flexible tool to control the computational complexity of long-term graph SLAM, with results shown for 34.9 h of real-world indoor–outdoor data covering 147.4 km collected over 27 mapping sessions spanning a period of 15 months.Nicholas Carlevaris-Bianco, Michael Kaess, and Ryan M. Eustic

    Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle

    No full text
    Abstract not availablePaul Ozog, Nicholas Carlevaris-Bianco, Ayoung Kim, Ryan M. Eustic

    Beyond Controlled Environments: 3D Camera Re-localization in Changing Indoor Scenes

    No full text
    Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan – a recently introduced indoor RGB-D dataset designed for object instance re-localization – to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at https://www.waldjohannau.github.io/RIO10
    corecore