302 research outputs found

    On the shape of the light profiles of early-type galaxies

    Full text link
    We have obtained the best fit to the light profiles of a luminosity limited sample of elliptical and S0 galaxies with a power law \rn, letting the exponent remain free rather than keeping it fixed at 1/n=1/41/n=1/4 as in the well known \GV formula. The introduction of a free parameter in the fitting formula (ranging from n=0.5n=0.5 for =0.3=0.3 kpc to n=16n=16 for =25=25 kpc) is justified by the existence of a good correlation between nn and the global galaxian parameters, such as total luminosity and scale-radius. This result seems to be in line with the segregation of properties between the `ordinary' and `bright' families of early-type galaxies, and has consequence for the claimed independence of the shape of galaxy profiles with respect to the Fundamental Plane parameters.Comment: 10 pages, postscript file including figures, PADOVA (archived file truncated during email transfer

    The Tilt of the Fundamental Plane: Three-quarters Structural Nonhomology, One-quarter Stellar Population

    Full text link
    The variation of the mass-to-light ratios M/L of early type galaxies as function of their luminosities L is investigated. It is shown that the tilt beta=0.27 (in the B--band) of the fundamental plane relation M/L ~ L^{beta} can be understood as a combination of two effects: about one-quarter (i.e. dbeta =0.07) is a result of systematic variations of the stellar population properties with increasing luminosity. The remaining three-quarters (i.e. dbeta =0.2) can be completely attributed to nonhomology effects that lead to a systematic change of the surface brightness profiles with increasing luminosity. Consequently, the observed tilt in the K-band (beta=0.17) where stellar population effects are negligible, is explained by nonhomology effects alone. After correcting for nonhomology, the mean value of the mass-to-light ratio of elliptical galaxies (M/L_B) is 7.1+-2.8 (1 sigma scatter).Comment: 8 pages, 3 figures, ApJL, 600, 39, minor changes made to match the published versio

    A Correlation between Galaxy Light Concentration and Supermassive Black Hole Mass

    Get PDF
    We present evidence for a strong correlation between the concentration of bulges and the mass of their central supermassive black hole (M_bh) -- more concentrated bulges have more massive black holes. Using C_{r_e}(1/3) from Trujillo, Graham & Caon (2001b) as a measure of bulge concentration, we find that log (M_bh/M_sun) = 6.81(+/-0.95)C_{r_e}(1/3) + 5.03(+/-0.41). This correlation is shown to be marginally stronger (Spearman's r_s=0.91) than the relationship between the logarithm of the stellar velocity dispersion and log M_bh (Spearman's r_s=0.86), and has comparable, or less, scatter (0.31 dex in log M_bh), which decreases to 0.19 dex when we use only those galaxies whose supermassive black hole's radius of influence is resolved and remove one well understood outlying data point).Comment: 7 pages, 1 table, 2 figures. ApJ Letters, accepte

    Analytical Galaxy Profiles for Photometric and Lensing Analysis

    Full text link
    This article introduces a family of analytical functions of the form x^{\nu} K_{\nu}(x), where K_{\nu} is the incomplete Bessel function of the third kind. This family of functions can describe the density profile, projected and integrated light profiles and the gravitational potentials of galaxies. For the proper choice of parameters, these functions accurately approximate Sersic functions over a range of indices and are good fits to galaxy light profiles. With an additional parameter corresponding to a galaxy core radius, these functions can fit galaxy like M87 over a factor of 100,000 in radius. Unlike Sersic profiles, these functions have simple analytical 2-dimensional and 3-dimensional Fourier transforms, so they are easily convolved with spatially varying point spread function and are well suited for photometric and lensing analysis. We use these functions to estimate the effects of seeing on lensing measurements and show that high S/N measurements, even when the PSF is larger than the galaxy effective radius, should be able to recover accurate estimates of lensing distortions by weighting light in the outer isophotes that are less effected by seeing

    A correlation between light profile and [Mg/Fe] abundance ratio in early-type galaxies

    Full text link
    We explore possible correlations between light profile shapes, as parameterized by the Sersic index or the concentration index C_re(1/3), and relevant stellar population parameters in early-type galaxies. Mean luminosity weighted ages, metallicities and abundance ratios were obtained from spectra of very high signal-to-noise and stellar population models that synthesize galaxy spectra at the resolution given by their velocity dispersions, in combination with an age indicator that is virtually free of the effects of metallicity. We do not find any significant correlation between the Sersic index (or C_re(1/3)) and mean age or metallicity, but a strong positive correlation of the shape parameters with [Mg/Fe] abundance ratio. This dependence is as strong as the [Mg/Fe] vs. velocity dispersion and C_re(1/3) vs. velocity dispersion relations. We speculate that early-type galaxies settle up their structure on time-scales in agreement with those imposed by their [Mg/Fe] ratios. This suggest that the global structure of larger galaxies, with larger [Mg/Fe] ratios and shorter time-scales, was already at place at high z, without experiencing a significant time evolution.Comment: 5 pages, 3 figures (to appear in The Astrophysical Journal Letters

    Galaxy Light Concentration. I. Index stability and the connection with galaxy structure, dynamics, and supermassive black holes

    Get PDF
    We explore the stability of different galaxy light concentration indices as a function of the outermost observed galaxy radius. With a series of analytical light-profile models, we show mathematically how varying the radial extent to which one measures a galaxy's light can strongly affect the derived galaxy concentration. The "mean concentration index", often used for parameterizing high-redshift galaxies, is shown to be horribly unstable, even when modeling one-component systems such as elliptical, dwarf elliptical and pure exponential disk galaxies. The C_31 concentration index performs considerably better but is also heavily dependent on the radial extent, and hence exposure depth, of any given galaxy. We show that the recently defined central concentration index is remarkably stable against changes to the outer radius, providing a meaningful and reliable estimate of galaxy concentration. The index n from the r^(1/n) models is shown to be monotonically related with the central concentration of light, giving the index n a second and perhaps more tangible meaning. With a sample of elliptical and dwarf elliptical galaxies, we present correlations between the central light concentration and the global parameters: luminosity (Pearson's r = -0.82), effective radius (r = 0.67), central surface brightness (r = -0.88), and velocity dispersion (r = 0.80). The more massive elliptical galaxies are shown to be more centrally concentrated. We speculate that the physical mechanism behind the recently observed correlation between the central velocity dispersion (mass) of a galaxy and the mass of its central supermassive black hole may be connected with the central galaxy concentration. That is, we hypothesize that it may not simply be the amount of mass in a galaxy but rather how that mass is distributed that controls the mass of the central black hole.Comment: (aastex, 18 pages including 13 figures

    An X-ray Survey of Galaxies in Pairs

    Full text link
    Results are reported from the first survey of X-ray emission from galaxies in pairs. The sample consists of fifty-two pairs of galaxies from the Catalog of Paired Galaxies Karachentsev (1972) whose coordinates overlap ROSAT Position Sensitive Proportional Counter pointed observations. The mean observed log l_x for early-type pairs is 41.35 +/-0.21 while the mean log l_x predicted using the l_x-l_b relationship for isolated early-type galaxies is 42.10 +/-0.19. With 95% confidence, the galaxies in pairs are underluminous in the X-ray, compared to isolated galaxies, for the same l_b. A significant fraction of the mixed pair sample also appear similarly underluminous. A spatial analysis shows that the X-ray emission from pairs of both types typically has an extent of ~10 - 50 kpc, much smaller than group intergalactic medium and thus likely originates from the galaxies. CPG 564, the most X-ray luminous early-type pair, 4.7x10^42 ergs/sec, is an exception. The extent of it's X-ray emission, >169 kpc, and HWHM, ~80 kpc, is comparable to that expected from an intergalactic medium. The sample shows only a weak correlation, ~81% confidence, between l_x and l_b, presumably due to variations in gas content within the galaxies. No correlation between l_x and the pair velocity difference, separation, or far-infrared luminosity is found though the detection rate is low, 22%.Comment: 40 pages, 6 jpg figures, ApJ (in press

    A New Empirical Model for the Structural Analysis of Early-type Galaxies and a Critical Review of the Nuker Model

    Full text link
    The Nuker law was designed to match the inner few (~3-10) arcseconds of predominantly nearby (< 30 Mpc) early-type galaxy light-profiles; it was never intended to describe an entire profile. The Sersic model, on the other hand, was developed to fit the entire profile; however, due to the presence of partially depleted galaxy cores, the Sersic model cannot always describe the very inner region. We have therefore developed a new empirical model consisting of an inner power-law, a transition region, and an outer Sersic model to connect the inner and outer structure of elliptical galaxies. Moreover, the stability of the Nuker model parameters are investigated. Surprisingly, none are found to be stable quantities; all are shown to vary systematically with a profile's fitted radial extent, and often by more than 100%. Considering elliptical galaxies spanning a range of 7.5 magnitudes, the central stellar density of the underlying host galaxy is observed to increase with galaxy luminosity until the onset of core formation, detected only in the brightest elliptical galaxies. We suggest that the so-called ``power-law'' galaxies may actually be described by the Sersic model over their entire radial range

    A New Approach to the Study of Stellar Populations in Early-Type Galaxies: K-band Spectral Indices and an Application to the Fornax Cluster

    Full text link
    New measurements of K-band spectral features are presented for eleven early-type galaxies in the nearby Fornax galaxy cluster. Based on these measurements, the following conclusions have been reached: (1) in galaxies with no signatures of a young stellar component, the K-band Na I index is highly correlated with both the optical metallicity indicator [MgFe]' and central velocity dispersion; (2) in the same galaxies, the K-band Fe features saturate in galaxies with sigma > 150 km/s while Na I (and [MgFe]') continues to increase; (3) [Si/Fe] (and possibly [Na/Fe]) is larger in all observed Fornax galaxies than in Galactic open clusters with near-solar metallicity; (4) in various near-IR diagnostic diagrams, galaxies with signatures of a young stellar component (strong Hbeta, weak [MgFe]') are clearly separated from galaxies with purely old stellar populations; furthermore, this separation is consistent with the presence of an increased number of M-giant stars (most likely to be thermally pulsating AGB stars); (5) the near-IR diagrams discussed here seem as efficient for detecting putatively young stellar components in early-type galaxies as the more commonly used age/metallicity diagnostic plots using optical indices (e.g Hbeta vs. [MgFe]').Comment: 47 pages, 16 figures, ApJ accepte

    Shrinking of Cluster Ellipticals: a Tidal Stripping explanation and Implications for the Intra-Cluster Light

    Full text link
    We look for evidence of tidal stripping in elliptical galaxies through the analysis of homogeneous CCD data corresponding to a sample of 228 elliptical galaxies belonging to 24 clusters of galaxies at 0.015<z<0.0800.015<z<0.080. We investigate departures from the standard magnitude-isophotal size relation, as a function of environmental (cluster-centric distance, local galaxy density) and structural (cluster velocity dispersion, Bautz-Morgan type) properties. We find that, for any particular galaxy luminosity, the ellipticals in the inner and denser regions of the clusters are about 5% smaller than those in the outer regions, which is in good agreement with the finding of Strom & Strom (1978) based on photographic photometry. The null hypothesis (ie., galaxy sizes are independent of the cluster-centric distance or density) is rejected at a significance level of better than 99.7%. Numericals models of Aguilar & White (1986) predict that tidal stripping can lead to changes in the whole structure of ellipticals producing shrinkage and brightening of the galaxy, qualitatively consistent with our measurements and also with the findings of Trujillo et al. (2002), that more centrally concentrated ellipticals populate denser regions. Our observational results can be interpreted as evidence for stripping of stars from ellipticals in the central/denser regions of clusters, contributing to the intra-cluster light observed in these structures.Comment: AJ Accepted, 15 pages, 9 figure
    corecore