22 research outputs found

    Design of a Mid-IR polarimeter for SOFIA

    No full text
    Mid-infrared polarimetry remains an underexploited technique; where available it is limited in spectral coverage from the ground, and conspicuously absent from the Spitzer, JWST and Herschel instrument suites. The unique characteristics of SOFIA afford unprecedented spectral coverage and sensitivity in the mid-infrared waveband. We discuss the preliminary optical design for a 5-40 m spectro-polarimeter for use on SOFIA, the SOFIA Mid-InfraRed Polarimeter (SMIRPh). The design furthers the existing 5-40μm imaging and spectroscopic capabilities of SOFIA, and draws on experience gained through the University of Florida's mid-IR imagers, spectrometer and polarimeter designs of T-ReCS and CanariCam. We pay special attention to the challenges of obtaining polarimetric materials suitable at both these wavelengths and cryogenic temperatures. Finally, we (briefly) present an overview of science highlights that could be performed from a 5-40μm imaging- and spectro-polarimeter on SOFIA. Combined with the synergy between the possible future far-IR polarimeter, Hale, this instrument would provide the SOFIA community with unique and exciting science capabilities, leaving a unique scientific legacy

    Design of a Mid-IR Polarimeter for SOFIA - art. no. 70142H

    No full text
    Mid-infrared polarimetry remains an underexploited technique; where available it is limited in spectral coverage from the ground, and conspicuously absent from the Spitzer, JWST and Herschel instrument suites. The unique characteristics of SOFIA afford unprecedented spectral coverage and sensitivity in the mid-infrared waveband. We discuss the preliminary optical design for a 5-40 mu m spectro-polarimeter for use on SOFIA, the SOFIA Mid-InfraRed Polarimeter (SMIRPh). The design furthers the existing 5-40 mu m imaging and spectroscopic capabilities of SOFIA, and draws on experience gained through the University of Florida's mid-IR imagers, spectrometer and polarimeter designs of T-ReCS and CanariCam. We pay special attention to the challenges of obtaining polarimetric materials suitable at both these wavelengths and cryogenic temperatures. Finally, we (briefly) present an overview of science highlights that could be performed from a 5-40 mu m imaging- and spectro-polarimeter on SOFIA. Combined with the synergy between the possible future far-IR polarimeter, Hale, this instrument would provide the SOFIA community with unique and exciting science capabilities, leaving a unique scientific legacy

    Information-Rich Manufacturing Metrology

    No full text
    Part 4: Digital Technologies and Industry 4.0 ApplicationsInternational audienceInformation-rich metrology (IRM) is a new term that refers to an approach, where the conventional paradigm of measurement is transcended, thanks to the introduction and active role of multiple novel sources of information. The overarching goal of IRM is to encompass and homogenise all those measurement scenarios where information available from heterogeneous sources, for example, from the object being measured, the manufacturing process that was used to fabricate it, the workings of the measurement instrument itself, as well as from any previous measurements carried with any other instrument, is gathered and somewhat incorporated with an active role into the measurement pipeline in order to ultimately achieve a higher-quality measurement result (better metrological performance, shorter measurement times, smaller consumption of resources). Examples of IRM in action in precision and additive manufacturing will be presented, including the measurement of form and texture
    corecore