12,433 research outputs found
Unambiguous determination of gravitational waveforms from binary black hole mergers
Gravitational radiation is properly defined only at future null infinity
(\scri), but in practice it is estimated from data calculated at a finite
radius. We have used characteristic extraction to calculate gravitational
radiation at \scri for the inspiral and merger of two equal mass non-spinning
black holes. Thus we have determined the first unambiguous merger waveforms for
this problem. The implementation is general purpose, and can be applied to
calculate the gravitational radiation, at \scri, given data at a finite
radius calculated in another computation.Comment: 4 pages, 3 figures, published versio
Initial data transients in binary black hole evolutions
We describe a method for initializing characteristic evolutions of the
Einstein equations using a linearized solution corresponding to purely outgoing
radiation. This allows for a more consistent application of the characteristic
(null cone) techniques for invariantly determining the gravitational radiation
content of numerical simulations. In addition, we are able to identify the {\em
ingoing} radiation contained in the characteristic initial data, as well as in
the initial data of the 3+1 simulation. We find that each component leads to a
small but long lasting (several hundred mass scales) transient in the measured
outgoing gravitational waves.Comment: 18 pages, 4 figure
Strategies for the characteristic extraction of gravitational waveforms
We develop, test, and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component Psi4 to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the O(1/r) radiative part of Psi4 in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves
A comparison of vertical and horizontal reactive strength index variants and association with change of direction performance
This study sought to investigate the inter-relationship between different vertical and horizontal variants of reactive strength index (RSI) and change of direction performance. Thirty-one male volleyball players (age: 22.4 ± 3.9 years), performed bilateral drop jumps (DJ), bilateral and unilateral countermovement jumps (CMJ), and triple hops for distance. The RSI was calculated as the ratio of jump height and contact time (DJ), jump height and time to take off (CMJ), and flight time or hop distance and contact time (triple hop), and 505 change of direction test. RSI obtained from DJ and CMJ tasks exhibited excellent trial-to-trial reliability (ICC = 0.91-0.94), while triple hop based RSI had only moderate reliability (ICC = 0.67-0.74). The relationships among different RSI variants were moderate to high (i.e. DJ to CMJ: r = 0.57-0.69; p †0.004; DJ to triple hop: r = 0.54-0.66; p †0.021 and CMJ to triple hop: r = 0.42-0.63; p †0.037). For the triple hop, the associations between RSI based on hop flight time and RSI based on hop distance were high for hop 1-2 (r = 0.77-0.83; p < 0.001) and very high for hop 2-3 (r = 0.91-0.92; p < 0.001). All RSI variants were in small to moderate negative correlation with 505 test performance (r = -0.38 to -0.45; p †0.042). The agreement in inter-limb asymmetry direction between in RSI from unilateral CMJ and triple hop RSI variables was slight to moderate (Kappa coefficient = 0.06-0.36). In conclusion, although inter-relationships between RSI variants were moderate to high, the direction of inter-limb asymmetry was inconsistent, highlighting the notion of movement variability in limb dominance
Factors influencing bilateral deficit and inter-limb asymmetry of maximal and explosive strength: motor task, outcome measure and muscle group
Purpose The purpose of the present study was to investigate the influence of strength outcome (maximal voluntary contraction (MVC) torque vs. rate of torque development (RTD)), motor task (unilateral vs. bilateral) and muscle group (knee extensors vs. flexors) on the magnitude of bilateral deficits and inter-limb asymmetries in a large heterogeneous group of athletes.
Methods 259 professional/semi-professional athletes from different sports (86 women aged 21 ± 6 years and 173 men aged 20 ± 5 years) performed unilateral and bilateral âfast and hardâ isometric maximal voluntary contractions of the knee extensors and flexors on a double-sensor dynamometer. Inter-limb asymmetries and bilateral deficits were compared across strength outcomes (MVC torque and multiple RTD measures), motor tasks and muscle groups.
Results Most RTD outcomes showed greater bilateral deficits than MVC torque for knee extensors, but not for knee flexors. Most RTD outcomes, not MVC torque, showed higher bilateral deficits for knee extensors compared to knee flexors. For both muscle groups, all RTD measures resulted in higher inter-limb asymmetries than MVC torque, and most RTD measures resulted in greater inter-limb asymmetries during unilateral compared to bilateral motor tasks.
Conclusions The results of the present study highlight the importance of outcome measure, motor task and muscle group when assessing bilateral deficits and inter-limb asymmetries of maximal and explosive strength. Compared to MVC torque and bilateral tasks, RTD measures and unilateral tasks could be considered more sensitive for the assessment of bilateral deficits and inter-limb asymmetries in healthy professional/semi-professional athletes
Strength, jumping and change of direction speed asymmetries in soccer, basketball and tennis players
Despite growing research in the field of inter-limb asymmetries (ILAs), little is known about the variation of ILAs in different populations of athletes. The purpose of this study was to compare ILAs among young basketball, soccer and tennis players. ILAs were assessed in three different types of tests (strength, jumping and change of direction (CoD) speed), each including different tasks: (1) bilateral and unilateral counter movement jump, (2) isometric strength of knee extensors (KE) and knee flexors (KF), and (3) 90° and 180° CoD. Generally, the absolute metrics showed strong reliability and revealed significant differences (p < 0.05) among the three groups in KE maximal torque, KE and KF rate of force development and in both CoD tests. For jumping ILAs, power and force impulse metrics exhibited significant between-limb differences between groups, compared to jump height. For strength and CoD speed ILAs, only KF maximal torque and 180° CoD exhibited significant differences between groups. Greater KF strength ILAs in soccer players and counter-movement jump ILAs in tennis players are most probably the result of sport-specific movement patterns and training routines. Sport practitioners should be aware of the differences in ILAs among sports and address training programs accordingly
Tunneling between Dilute GaAs Hole Layers
We report interlayer tunneling measurements between very dilute
two-dimensional GaAs hole layers. Surprisingly, the shape and
temperature-dependence of the tunneling spectrum can be explained with a Fermi
liquid-based tunneling model, but the peak amplitude is much larger than
expected from the available hole band parameters. Data as a function of
parallel magnetic field reveal additional anomalous features, including a
recurrence of a zero-bias tunneling peak at very large fields. In a
perpendicular magnetic field, we observe a robust and narrow tunneling peak at
total filling factor , signaling the formation of a bilayer quantum
Hall ferromagnet.Comment: Revised to include additional data, new discussion
High-powered Gravitational News
We describe the computation of the Bondi news for gravitational radiation. We
have implemented a computer code for this problem. We discuss the theory behind
it as well as the results of validation tests. Our approach uses the
compactified null cone formalism, with the computational domain extending to
future null infinity and with a worldtube as inner boundary. We calculate the
appropriate full Einstein equations in computational eth form in (a) the
interior of the computational domain and (b) on the inner boundary. At future
null infinity, we transform the computed data into standard Bondi coordinates
and so are able to express the news in terms of its standard and
polarization components. The resulting code is stable and
second-order convergent. It runs successfully even in the highly nonlinear
case, and has been tested with the news as high as 400, which represents a
gravitational radiation power of about .Comment: 24 pages, 4 figures. To appear in Phys. Rev.
Theory of Bubble Nucleation and Cooperativity in DNA Melting
The onset of intermediate states (denaturation bubbles) and their role during
the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois
model by Monte Carlo simulations with no adjustable parameters. Comparison is
made with previously published experimental results finding excellent
agreement. Melting curves, critical DNA segment length for stability of bubbles
and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter
Managing the patient with osteogenesis imperfecta: a multidisciplinary approach
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder characterized by low bone density. The type and severity of OI are variable. The primary manifestations are fractures, bone deformity, and bone pain, resulting in reduced mobility and function to complete everyday tasks. OI affects not only the physical but also the social and emotional well-being of children, young people, and their families. As such, medical, surgical, and allied health professionals' assessments all play a role in the management of these children. The multidisciplinary approach to the treatment of children and young people living with OI seeks to provide well-coordinated, comprehensive assessments, and interventions that place the child and family at the very center of their care. The coordinated efforts of a multidisciplinary team can support children with OI to fulfill their potential, maximizing function, independence, and well-being
- âŠ