289 research outputs found
Evolution of Harmonic Distortion in a Cablified Grid Island after Separation from the Meshed Transmission Grid - A Case Study from Denmark
Green transition in Denmark with more renewable energy production and electrification of consumption, transport, heating, energy conversion and storage accelerates expansion and reconstruction of the transmission grid. When electricity generation and consumption have common connection cables and substations in the transmission grid, such centres are called prosumers.The prosumers do not necessarily increase the net energy exchange with the transmission grid but their short-circuit current contribution may significantly increase due to utilization of inverter-based units. To keep the short-circuit current contribution below the required rating, the meshed 150 kV transmission grid will be separated into islands that are interconnected through the 400 kV meshed transmission system. At the same time, 150 kV overhead lines will be replaced with underground cables as part of the ongoing grid reconstruction in Denmark. This paper presents the simulation results of the 5th harmonic voltage distortion evolution from the present grid stage with the meshed 150 kV transmission grid and, mainly, with overhead lines, through a long-term grid development process with cabling and separation of the meshed grid into 150 kV grid islands. The paper explains foreseen changes of the 5th harmonic voltage distortion within a specific grid island using a measurement validated simulation model for harmonic assessment and benchmarking the simulation results to the harmonic voltage measurements in the present grid stage. The paper also demonstrates identification and usage of early warnings for not-yet-occurred critical increases of the harmonic voltage distortion and proposal of mitigation solutions.<br/
Tur\'an numbers for -free graphs: topological obstructions and algebraic constructions
We show that every hypersurface in contains a large grid,
i.e., the set of the form , with . We use this to
deduce that the known constructions of extremal -free and
-free graphs cannot be generalized to a similar construction of
-free graphs for any . We also give new constructions of
extremal -free graphs for large .Comment: Fixed a small mistake in the application of Proposition
SARS-CoV-2 Production in a Scalable High Cell Density Bioreactor
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has demonstrated the value of pursuing different vaccine strategies. Vaccines based on whole viruses, a widely used vaccine technology, depend on efficient virus production. This study aimed to establish SARS-CoV-2 production in the scalable packed-bed CelCradle(TM) 500-AP bioreactor. CelCradle(TM) 500-AP bottles with 0.5 L working volume and 5.5 g BioNOC™ II carriers were seeded with 1.5 × 10(8) Vero (WHO) cells, approved for vaccine production, in animal component-free medium and infected at a multiplicity of infection of 0.006 at a total cell number of 2.2–2.5 × 10(9) cells/bottle seven days post cell seeding. Among several tested conditions, two harvests per day and a virus production temperature of 33 °C resulted in the highest virus yield with a peak SARS-CoV-2 infectivity titer of 7.3 log(10) 50% tissue culture infectious dose (TCID(50))/mL at 72 h post-infection. Six harvests had titers of ≥6.5 log(10) TCID(50)/mL, and a total of 10.5 log(10) TCID(50) were produced in ~5 L. While trypsin was reported to enhance virus spread in cell culture, addition of 0.5% recombinant trypsin after infection did not improve virus yields. Overall, we demonstrated successful animal component-free production of SARS-CoV-2 in well-characterized Vero (WHO) cells in a scalable packed-bed bioreactor
In-vitro model systems to study Hepatitis C Virus
Hepatitis C virus (HCV) is a major cause of chronic liver diseases including steatosis, cirrhosis and hepatocellular carcinoma. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. The development of in-vitro models such as HCV infection system, HCV sub-genomic replicon, HCV producing pseudoparticles (HCVpp) and infectious HCV virion provide an important tool to develop new antiviral drugs of different targets against HCV. These models also play an important role to study virus lifecycle such as virus entry, endocytosis, replication, release and HCV induced pathogenesis. This review summarizes the most important in-vitro models currently used to study future HCV research as well as drug design
Governance tools for board members : adapting strategy maps and balanced scorecards for directorial action
The accountability of members of the board of directors of publicly traded companies has increased over years. Corresponding to these developments, there has been an inadequate advancement of tools and frameworks to help directorial functioning. This paper provides an argument for design of the Balanced Scorecard and Strategy Maps made available to the directors as a means of influencing, monitoring, controlling and assisting managerial action. This paper examines how the Balanced Scorecard and Strategy Maps could be modified and used for this purpose. The paper suggests incorporating Balanced Scorecards in the Internal Process perspective, ‘internal’ implying here not just ‘internal to the firm’, but also ‘internal to the inter-organizational system’. We recommend that other such factors be introduced separately under a new ‘perspective’ depending upon what the board wants to emphasize without creating any unwieldy proliferation of measures. Tracking the Strategy Map over time by the board of directors is a way for the board to take responsibility for the firm’s performance. The paper makes a distinction between action variables and monitoring variables. Monitoring variables are further divided on the basis of two considerations: a) whether results have been met or not and b) whether causative factors have met the expected levels of performance or not. Based on directorial responsibilities and accountability, we take another look at how the variables could be specified more completely and accurately with directorial recommendations for executives
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
Hepatitis C virus genotype frequency in Isfahan province of Iran: a descriptive cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV). The hepatitis C virus is a small, enveloped, single-stranded, positive sense RNA virus with a large genetic heterogeneity. Isolates have been classified into at least eleven major genotypes, based on a nucleotide sequence divergence of 30-35%. Genotypes 1, 2 and 3 circulate around the world, while other genotypes are mainly restricted to determined geographical areas. Genotype determination of HCV is clinically valuable as it provides important information which can be used to determine the type and duration of therapy and to predict the outcome of the disease.</p> <p>Results</p> <p>Plasma samples were collected from ninety seven HCV RNA positive patients admitted to two large medical laboratory centers in Isfahan province (Iran) from the years 2007 to 2009. Samples from patients were subjected to HCV genotype determination using a PCR based genotyping kit. The frequency of HCV genotypes was determined as follows: genotype 3a (61.2%), genotype 1a (29.5%), genotype 1b (5.1%), genotype 2 (2%) and mixed genotypes of 1a+3a (2%).</p> <p>Conclusion</p> <p>Genotype 3a is the most frequent followed by the genotype 1a, genotype 1b and genotype 2 in Isfahan province, Iran.</p
- …