10 research outputs found

    Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue

    Get PDF
    Tar DNA Binding Protein-43 (TDP-43) is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein - RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway

    The use of custom 3D printed stereotactic frames for laser interstitial thermal ablation: technical note

    No full text

    A neuronal code for object representation and memory in the human amygdala and hippocampus

    No full text
    How the brain encodes, recognizes, and memorizes general visual objects is a fundamental question in neuroscience. Here, we investigated the neural processes underlying visual object perception and memory by recording from 3173 single neurons in the human amygdala and hippocampus across four experiments. We employed both passive-viewing and recognition memory tasks involving a diverse range of naturalistic object stimuli. Our findings reveal a novel region-based feature code for general objects, where neurons exhibit receptive fields in the high-level visual feature space. This code can be validated by independent new stimuli and replicated across all experiments, including fixation-based analyses with large natural scenes. This region-based code explains the long-standing visual category selectivity, preferentially enhances memory of encoded stimuli, predicts memory performance, encodes image memorability, and exhibits intricate interplay with memory contexts. Together, this region-based code provides a critical link between visual feature processing and semantic representations in memory

    Clinical and pathological continuum of multisystem TDP-43 proteinopathies

    Full text link
    OBJECTIVE: To determine the extent of transactivation response DNA-binding protein with a molecular weight of 43 kDa (TDP-43) pathology in the central nervous system of patients with clinically and autopsy-confirmed diagnoses of frontotemporal lobar degeneration with and without motor neuron disease and amyotrophic lateral sclerosis with and without cognitive impairment. DESIGN: Performance of immunohistochemical whole-central nervous system scans for evidence of pathological TDP-43 and retrospective clinical medical record review. SETTING: An academic medical center. PARTICIPANTS: We included 64 patients with clinically and pathologically confirmed frontotemporal lobar degeneration with ubiquitinated inclusions with or without motor neuron disease and amyotrophic lateral sclerosis with or without cognitive impairment. MAIN OUTCOME MEASURE: Neuronal and glial TDP-43 pathology. RESULTS: We found evidence of neuronal and glial TDP-43 pathology in all disease groups throughout the neuraxis, albeit with variations in the frequency, morphology, and distribution of TDP-43 lesions. Moreover, the major clinical manifestations (eg, cognitive impairments, motor neuron signs, extrapyramidal symptoms, neuropsychiatric features) were reflected by the predominant distribution and burden of TDP-43 pathology. CONCLUSION: These findings strongly suggest that amyotrophic lateral sclerosis, frontotemporal lobar degeneration with amyotrophic lateral sclerosis or motor neuron disease, and frontotemporal lobar degeneration with ubiquitinated inclusions are different manifestations of a multiple-system TDP-43 proteinopathy linked to similar mechanisms of neurodegeneration

    Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration

    No full text
    corecore