244 research outputs found
Marriage âsharia styleâ: everyday practices of Islamic morality in England
The growing visibility of Islam in the public spaces of Western societies is often interpreted in the media as a sign of Muslim radicalisation. This article questions this postulate by examining the flourishing Muslim marriage industry in the UK. It argues that these âhalalâ services, increasingly popular among the young generation of British Muslims, reflect the semantic shifting of categories away from the repertoire of Islamic jurisprudence to cultural and identity labels visible in public space. Informed by long-term ethnographic fieldwork in the British field of Islamic law, this article examines a Muslim speed-dating event, which took place in central London in 2013. It investigates how Islamic morality is maintained and negotiated in everyday social interactions rather than cultivated via discipline and the pursuit of virtuous dispositions. Using Goffmanâs âframe analysisâ and his interpretation of the social as a space of âperformancesâ as well as recent anthropological reflections on âordinary ethicsâ (Lambek) and âeveryday Islamâ (Schielke, Osella and Soares), it examines the potential for such practices to define the contours of a new public culture where difference is celebrated as a form of distinction
Circular dichroism in molecular-frame photoelectron angular distributions in the dissociative photoionization of H2 and D2 molecules
ABSTRACT: The presence of net circular dichroism in the photoionization of nonchiral homonuclear molecules has been put in evidence recently through the measurement of molecular-frame photoelectron angular distributions in
dissociative photoionization of H2 [Dowek et al., Phys. Rev. Lett. 104, 233003 (2010)]. In this work we present a detailed study of circular dichroism in the photoelectron angular distributions of H2 and D2 molecules, oriented perpendicularly to the propagation vector of the circularly polarized light, at different photon energies (20, 27, and 32.5 eV). Circular dichroism in the angular distributions at 20 and to a large extent 27 eV exhibits the usual pattern in which inversion symmetry is preserved. In contrast, at 32.5 eV, the inversion symmetry breaks down, which eventually leads to total circular dichroism after integration over the polar emission angle. Time-dependent ab initio calculations support and explain the observed results for H2 in terms of quantum interferences between direct photoionization and delayed autoionization from the Q1 and Q2 doubly excited states into ionic states (1sÏg and 2pÏu) of different inversion symmetry. Nevertheless, for D2 at 32.5 eV, there is a particular case where theory and experiment disagree in the magnitude of the symmetry breaking: when D+ ions are produced with an energy of around 5 eV. This reflects the subleties associated to such simple molecules when exposed to this fine scrutiny
Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability
International audienceThe development of hypersonic vehicles (up to Mach 10) leads to an important heating of the whole structure. The fuel is thus used as a coolant. It presents an endothermic decomposition with possible coke formation. Its additional permeation through the porous structure involves internal convection. This implies very complex phenomena (heat and mass transfers with chemistry). In this paper, the n-dodecane pyrolysis is studied through stainless steel porous medium up to 820 K and 35 bar (supercritical state). The longitudinal profiles of chemical compositions inside the porous medium are given thanks to a specific sampling technique with off-line Gas Chromatograph and Mass Spectrometer analysis. By comparison with previous experiments under plug flow reactor, the conversion of dodecane is higher for the present experimental configuration. The pyrolysis produces preferentially light gaseous species, which results in a higher gasification rate for a similar pyrolysis rate. The effects of the residence time and of the contact surface area are demonstrated. The transient changes of Darcy's permeability are related to the coke formation thanks to previous experimental relationship with methane production. A time shift is observed between coke chemistry and permeability change. This work is quite unique to the author's knowledge because of the complex chemistry of heavy hydrocarbon fuels pyrolysis, particularly in porous medium
P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer \u3e1x106) and provided 80â100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P.falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine
Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage
Sodium-ion batteries (NIBs) are a front-runner among the alternative battery technologies suggested for substituting the state-of-the-art lithium-ion batteries (LIBs). The specific energy of Na-ion batteries is significantly lower than that of LIBs, which is mainly due to the lower operating potentials and higher molecular weight of sodium insertion cathode materials. To compete with the high energy density of LIBs, high voltage cathode materials are required for NIBs. Here we report a theoretical investigation on weberite-type sodium metal fluorides (SMFs), a new class of high voltage and high energy density materials which are so far unexplored as cathode materials for NIBs. The weberite structure type is highly favorable for sodium-containing transition metal fluorides, with a large variety of transition metal combinations (M, Mâ) adopting the corresponding Na2MMâF7 structure. A series of known and hypothetical compounds with weberite-type structure were computationally investigated to evaluate their potential as cathode materials for NIBs. Weberite-type SMFs show two-dimensional pathways for Na+ diffusion with surprisingly low activation barriers. The high energy density combined with low diffusion barriers for Na+ makes this type of compounds promising candidates for cathode materials in NIBs
Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein
Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively âregulatingâ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexinâs role in therapeutic and adverse effects of statins in a range of disease states
- âŠ