80 research outputs found
The BASES Expert Statement on Exercise, Immunity, and Infection
This article was published in the Journal of Sports Sciences [© Taylor & Francis] and the definitive version is available at: http://dx.doi.org/10.1080/02640414.2011.627371An individual's level of physical activity influences their risk of infection, most likely by affecting immune function. Regular moderate exercise reduces the risk of infection compared with a sedentary lifestyle, but very prolonged bouts of exercise and periods of intensified training are associated with an increased risk of infection. There are several lifestyle, nutritional, and training strategies that can be adopted to limit the extent of exercise-induced immunodepression and minimize the risk of infection. This expert statement provides a background summarizing the evidence together with extensive conclusions and practical guidelines
Theory of the Fano Resonance in the STM Tunneling Density of States due to a Single Kondo Impurity
The conduction electron density of states nearby single magnetic impurities,
as measured recently by scanning tunneling microscopy (STM), is calculated,
taking into account tunneling into conduction electron states only. The Kondo
effect induces a narrow Fano resonance in the conduction electron density of
states, while scattering off the d-level generates a weakly energy dependent
Friedel oscillation. The line shape varies with the distance between STM tip
and impurity, in qualitative agreement with experiments, but is very sensitive
to details of the band structure. For a Co impurity the experimentally observed
width and shift of the Kondo resonance are in accordance with those obtained
from a combination of band structure and strongly correlated calculations.Comment: 4 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to
PR
Hydration and cooling in elite athletes: relationship with performance, body mass loss and body temperatures during the Doha 2019 IAAF World Athletics Championships
Purpose: To characterise hydration, cooling, body
mass loss, and core (Tcore) and skin (Tsk) temperatures
during World Athletics Championships in hot-humid
conditions.
Methods: Marathon and race-walk (20 km and 50
km) athletes (n=83, 36 women) completed a pre-race
questionnaire. Pre-race and post-race body weight
(n=74), Tcore (n=56) and Tsk (n=49; thermography) were
measured.
Results: Most athletes (93%) had a pre-planned
drinking strategy (electrolytes (83%), carbohydrates
(81%)) while ice slurry was less common (11%;
p<0.001). More men than women relied on
electrolytes and carbohydrates (91%–93% vs
67%–72%, p≤0.029). Drinking strategies were based
on personal experience (91%) rather than external
sources (p<0.001). Most athletes (80%) planned
pre-cooling (ice vests (53%), cold towels (45%), neck
collars (21%) and ice slurry (21%)) and/or midcooling (93%; head/face dousing (65%) and cold
water ingestion (52%)). Menthol usage was negligible
(1%–2%). Pre-race Tcore was lower in athletes
using ice vests (37.5°C±0.4°C vs 37.8°C±0.3°C,
p=0.024). Tcore (pre-race 37.7°C±0.3°C, post-race
39.6°C±0.6°C) was independent of event, ranking or
performance (p≥0.225). Pre-race Tsk was correlated
with faster race completion (r=0.32, p=0.046)
and was higher in non-finishers (did not finish
(DNF); 33.8°C±0.9°C vs 32.6°C±1.4°C, p=0.017).
Body mass loss was higher in men than women
(−2.8±1.5% vs −1.3±1.6%, p<0.001), although not
associated with performance.
Conclusion: Most athletes’ hydration strategies
were pre-planned based on personal experience. Ice
vests were the most adopted pre-cooling strategy
and the only one minimising Tcore, suggesting that
event organisers should be cognisant of logistics (ie,
freezers). Dehydration was moderate and unrelated to
performance. Pre-race Tsk was related to performance
and DNF, suggesting that Tsk modulation should be
incorporated into pre-race strategies
Hydration and cooling in elite athletes: relationship with performance, body mass loss and body temperatures during the Doha 2019 IAAF World Athletics Championships.
PURPOSE: To characterise hydration, cooling, body mass loss, and core (Tcore) and skin (Tsk) temperatures during World Athletics Championships in hot-humid conditions. METHODS: Marathon and race-walk (20 km and 50 km) athletes (n=83, 36 women) completed a pre-race questionnaire. Pre-race and post-race body weight (n=74), Tcore (n=56) and Tsk (n=49; thermography) were measured. RESULTS: Most athletes (93%) had a pre-planned drinking strategy (electrolytes (83%), carbohydrates (81%)) while ice slurry was less common (11%; p<0.001). More men than women relied on electrolytes and carbohydrates (91%-93% vs 67%-72%, p≤0.029). Drinking strategies were based on personal experience (91%) rather than external sources (p<0.001). Most athletes (80%) planned pre-cooling (ice vests (53%), cold towels (45%), neck collars (21%) and ice slurry (21%)) and/or mid-cooling (93%; head/face dousing (65%) and cold water ingestion (52%)). Menthol usage was negligible (1%-2%). Pre-race Tcore was lower in athletes using ice vests (37.5°C±0.4°C vs 37.8°C±0.3°C, p=0.024). Tcore (pre-race 37.7°C±0.3°C, post-race 39.6°C±0.6°C) was independent of event, ranking or performance (p≥0.225). Pre-race Tsk was correlated with faster race completion (r=0.32, p=0.046) and was higher in non-finishers (did not finish (DNF); 33.8°C±0.9°C vs 32.6°C±1.4°C, p=0.017). Body mass loss was higher in men than women (-2.8±1.5% vs -1.3±1.6%, p<0.001), although not associated with performance. CONCLUSION: Most athletes' hydration strategies were pre-planned based on personal experience. Ice vests were the most adopted pre-cooling strategy and the only one minimising Tcore, suggesting that event organisers should be cognisant of logistics (ie, freezers). Dehydration was moderate and unrelated to performance. Pre-race Tsk was related to performance and DNF, suggesting that Tsk modulation should be incorporated into pre-race strategies
Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory
Using nonequilibrium perturbation theory, we investigate the nonlinear
transport through a quantum dot in the Kondo regime in the presence of a
magnetic field. We calculate the leading logarithmic corrections to the local
magnetization and the differential conductance, which are characteristic of the
Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we
determine the nonequilibrium magnetization on the dot and show that the
application of both a finite bias voltage and a magnetic field induces a novel
structure of logarithmic corrections not present in equilibrium. These
corrections lead to more pronounced features in the conductance, and their form
calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure
Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers
Recently, it has been shown that magnetic tunnel junctions with thin MgO
tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR)
values at room temperature1, 2. However, the physics of spin dependent
tunneling through MgO barriers is only beginning to be unravelled. Using planar
magnetic tunnel junctions in which ultra-thin layers of magnetic metals are
deposited in the middle of a MgO tunnel barrier here we demonstrate that the
TMR is strongly modified when these layers are discontinuous and composed of
small pancake shaped nanodots. At low temperatures, in the Coulomb blockade
regime, for layers less than ~1 nm thick, the conductance of the junction is
increased at low bias consistent with Kondo assisted tunneling. In the same
regime we observe a suppression of the TMR. For slightly thicker layers, and
correspondingly larger nanodots, the TMR is enhanced at low bias, consistent
with co-tunneling.Comment: Nano Letters (in press
The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group
While the properties of the Kondo model in equilibrium are very well
understood, much less is known for Kondo systems out of equilibrium. We study
the properties of a quantum dot in the Kondo regime, when a large bias voltage
V and/or a large magnetic field B is applied. Using the perturbative
renormalization group generalized to stationary nonequilibrium situations, we
calculate renormalized couplings, keeping their important energy dependence. We
show that in a magnetic field the spin occupation of the quantum dot is
non-thermal, being controlled by V and B in a complex way to be calculated by
solving a quantum Boltzmann equation. We find that the well-known suppression
of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic
dephasing processes induced by the current through the dot. We calculate the
corresponding decoherence rate, which serves to cut off the RG flow usually
well inside the perturbative regime (with possible exceptions). As a
consequence, the differential conductance, the local magnetization, the spin
relaxation rates and the local spectral function may be calculated for large
V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect --
40 Years after the Discovery", some typos correcte
Consensus statement immunonutrition and exercise
In this consensus statement on immunonutrition and exercise, a panel of knowledgeable contributors from across the globe provides a consensus of updated science, including the background, the aspects for which a consensus actually exists, the controversies and, when possible, suggested directions for future research
A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial
Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 ± 1 years [mean ± SEM]; BMI: 28.5 ± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Σ1RM, SUPP: +14 ± 4 kg, CON: +3 ± 2 kg, P < 0.001) and lean mass (LBM, +1.2 ± 0.3 kg, CON: -0.1 ± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Σ upper body 1RM: 119 ± 4 vs. 109 ± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training
- …