19 research outputs found

    Characterization and Expression of Glutamate Dehydrogenase in Response to Acute Salinity Stress in the Chinese Mitten Crab, Eriocheir sinensis

    Get PDF
    Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species.GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5'- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3'- untranslated region. E. sinensis GDH showed 64-90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA.E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions

    Cloning and Characterization of the Gene Encoding the Glutamate Dehydrogenase of Streptococcus suis Serotype 2

    No full text
    Given the lack of effective vaccines to control Streptococcus suis infection and the lack of a rapid and reliable molecular diagnostic assay to detect its infection, a polyclonal antibody was raised against the whole-cell protein of S. suis type 2 and used to screen an S. suis gene library in an effort to identify protective antigen(s) and antigens of diagnostic importance. A clone that produced a 45-kDa S. suis-specific protein was identified by Western blotting. Restriction analysis showed that the gene encoding the 45-kDa protein was present on a 1.6-kb pair DraI region on the cloned chromosomal fragment. The nucleotide sequence contained an open reading frame that encoded a polypeptide of 448 amino acid residues with a calculated molecular mass of 48.8 kDa, in close agreement with the size observed on Western blots. A GenBank database search revealed that the derived amino acid sequence is homologous to the sequence of glutamate dehydrogenase (GDH) protein isolated from various sources, including conserved motifs and functional domains typical of the family 1-type hexameric GDH proteins, thus placing it in that family. Because of these similarities, the protein was designated the GDH of S. suis. Hybridization studies showed that the gene is conserved among the S. suis type 2 strains tested. Antiserum raised against the purified recombinant protein was reactive with a protein of the same molecular size as the recombinant protein in S. suis strains, suggesting expression of the gene in all of the isolates and antigenic conservation of the protein. The recombinant protein was reactive with serum from pigs experimentally infected with a virulent strain of S. suis type 2, suggesting that the protein might serve as an antigen of diagnostic importance to detect S. suis infection. Activity staining showed that the S. suis GDH activity is NAD(P)H dependent but, unlike the NAD(P)H-dependent GDH from various other sources, that of S. suis utilizes l-glutamate rather than α-ketoglutarate as the substrate. Highly virulent strains of S. suis type 2 could be distinguished from moderately virulent and avirulent strains on the basis of their GDH protein profile following activity staining on a nondenaturing gel. We examined the cellular location of the protein using a whole-cell enzyme-linked immunosorbent assay and an immunogold-labeling technique. Results showed that the S. suis GDH protein is exposed at the surface of intact cells
    corecore