6,840 research outputs found
Heralded noiseless amplification and attenuation of non-gaussian states of light
We examine the behavior of non-Gaussian states of light under the action of
probabilistic noiseless amplification and attenuation. Surprisingly, we find
that the mean field amplitude may decrease in the process of noiseless
amplification -- or increase in the process of noiseless attenuation, a
counterintuitive effect that Gaussian states cannot exhibit. This striking
phenomenon could be tested with experimentally accessible non-Gaussian states,
such as single-photon added coherent states. We propose an experimental scheme,
which is robust with respect to the major experimental imperfections such as
inefficient single-photon detection and imperfect photon addition. In
particular, we argue that the observation of mean field amplification by
noiseless attenuation should be feasible with current technology
Combined information from Raman spectroscopy and optical coherence tomography for enhanced diagnostic accuracy in tissue discrimination
We thank the UK EPSRC for funding, the CR-UK/EPSRC/MRC/DoH (England) imaging programme, the European Union project FAMOS (FP7 ICT, contract no. 317744) and the European Union project IIIOS (FP7/2007-2013, contract no. 238802). We thank Tayside Tissue Bank for providing us with the tissue samples under request number TR000289. K.D. is a Royal Society-Wolfson Merit Award Holder.Optical spectroscopy and imaging methods have proved to have potential to discriminate between normal and abnormal tissue types through minimally invasive procedures. Raman spectroscopy and Optical Coherence Tomography (OCT) provides chemical and morphological information of tissues respectively, which are complementary to each other. When used individually they might not be able to obtain high enough sensitivity and specificity that is clinically relevant. In this study we combined Raman spectroscopy information with information obtained from OCT to enhance the sensitivity and specificity in discriminating between Colonic Adenocarcinoma from Normal Colon. OCT being an imaging technique, the information from this technique is conventionally analyzed qualitatively. To combine with Raman spectroscopy information, it was essential to quantify the morphological information obtained from OCT. Texture analysis was used to extract information from OCT images, which in-turn was combined with the information obtained from Raman spectroscopy. The sensitivity and specificity of the classifier was estimated using leave one out cross validation (LOOCV) method where support vector machine (SVM) was used for binary classification of the tissues. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These results demonstrate that a multimodal approach using Raman-OCT would be able to enhance the diagnostic accuracy for identifying normal and cancerous tissue types.Publisher PD
Phantom cosmology with a decaying cosmological function induced from five-dimensional (5D) geometrical vacuum
Introducing a variable cosmological function in a geometrical
manner from a 5D Riemann-flat metric, we investigate the possibility of having
a geometrical criterion to choose a suitable cosmological function for every 4D dynamical hypersurface capable of generate phantom
cosmologies.Comment: final versio
A probabilistic approach to composite micromechanics
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study
Measurements of the Cerenkov light emitted by a TeO2 crystal
Bolometers have proven to be good instruments to search for rare processes
because of their excellent energy resolution and their extremely low intrinsic
background. In this kind of detectors, the capability of discriminating alpha
particles from electrons represents an important aspect for the background
reduction. One possibility for obtaining such a discrimination is provided by
the detection of the Cerenkov light which, at the low energies of the natural
radioactivity, is only emitted by electrons. In this paper, the results of the
analysis of the light emitted by a TeO2 crystal at room temperature when
transversed by a cosmic ray are reported. Light is promptly emitted after the
particle crossing and a clear evidence of its directionality is also found.
These results represent a strong indication that Cerenkov light is the main, if
not even the only, component of the light signal in a TeO2 crystal. They open
the possibility to make large improvements in the performance of experiments
based on this kind of material
Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments
We discuss to what extent future precision measurements of neutrino mixing
observables will influence the information we can draw from a measurement of
(or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2
corresponding to solar and atmospheric neutrino oscillations are expected to be
known with good precision, the parameter theta_{12} will govern large part of
the uncertainty. We focus in particular on the possibility of distinguishing
the neutrino mass hierarchies and on setting a limit on the neutrino mass. We
give the largest allowed values of the neutrino masses which allow to
distinguish the normal from the inverted hierarchy. All aspects are discussed
as a function of the uncertainty stemming from the involved nuclear matrix
elements. The implications of a vanishing, or extremely small, effective mass
are also investigated. By giving a large list of possible neutrino mass
matrices and their predictions for the observables, we finally explore how a
measurement of (or an improved limit on) neutrinoless double beta decay can
help to identify the neutrino mass matrix if more precise values of the
relevant parameters are known.Comment: 35 pages, 12 figures. Comments and references added. To appear in PR
Measurements and optimization of the light yield of a TeO crystal
Bolometers have proven to be good instruments to search for rare processes
because of their excellent energy resolution and their extremely low intrinsic
background. In this kind of detectors, the capability of discriminating alpha
particles from electrons represents an important aspect for the background
reduction. One possibility for obtaining such a discrimination is provided by
the detection of the Cherenkov light which, at the low energies of the natural
radioactivity, is only emitted by electrons. This paper describes the method
developed to evaluate the amount of light produced by a crystal of TeO when
hit by a 511 keV photon. The experimental measurements and the results of a
detailed simulation of the crystal and the readout system are shown and
compared. A light yield of about 52 Cherenkov photons per deposited MeV was
measured. The effect of wrapping the crystal with a PTFE layer, with the aim of
maximizing the light collection, is also presented
- …