26 research outputs found

    Knocking down gene expression for growth hormone-releasing hormone inhibits proliferation of human cancer cell lines

    Get PDF
    Splice Variant 1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor, found in a wide range of human cancers and established human cancer cell lines, is a functional receptor with ligand-dependent and independent activity. In the present study, we demonstrated by western blots the presence of the SV1 of GHRH receptor and the production of GHRH in MDA-MB-468, MDA-MB-435S and T47D human breast cancer cell lines, LNCaP prostate cancer cell line as well as in NCI H838 non-small cell lung carcinoma. We have also shown that GHRH produced in the conditioned media of these cell lines is biologically active. We then inhibited the intrinsic production of GHRH in these cancer cell lines using si-RNA, specially designed for human GHRH. The knocking down of the GHRH gene expression suppressed the proliferation of T47D, MDA-MB-435S, MDA-MB-468 breast cancer, LNCaP prostate cancer and NCI H838 non-SCLC cell lines in vitro. However, the replacement of the knocked down GHRH expression by exogenous GHRH (1–29)NH2 re-established the proliferation of the silenced cancer cell lines. Furthermore, the proliferation rate of untransfected cancer cell lines could be stimulated by GHRH (1–29)NH2 and inhibited by GHRH antagonists MZ-5-156, MZ-4-71 and JMR-132. These results extend previous findings on the critical function of GHRH in tumorigenesis and support the role of GHRH as a tumour growth factor

    ISSUE HIGHLIGHTS

    No full text

    Stimulation of proliferation of MCF-7 breast cancer cells by a transfected splice variant of growth hormone-releasing hormone receptor

    No full text
    Recent evidence indicates that growth hormone-releasing hormone (GHRH) functions as an autocrine/paracrine growth factor for various human cancers. A splice variant (SV) of the full-length receptor for GHRH (GHRHR) is widely expressed in various primary human cancers and established cancer cell lines and appears to mediate the proliferative effects of GHRH. To investigate in greater detail the role of SV1 in tumorigenesis, we have expressed the full-length GHRHR and its SV1 in MCF-7 human breast cancer cells that do not possess either GHRHR or SV1. In accordance with previous findings, the expression of both GHRHR and SV1 restored the sensitivity to GHRH-induced stimulation of cell proliferation, with SV1 being more potent than the GHRHR. Furthermore, MCF-7 cells transfected with SV1 proliferated more quickly than the controls, even in the absence of exogenously added GHRH, suggesting the existence of intrinsic, ligand-independent activity of SV1 after its transfection. In agreement with the stimulation of cell proliferation, the levels of proliferation markers cyclin D1, cyclin E, and proliferating cell nuclear antigen were elevated in MCF-7 cells treated with GHRH, cultured in both serum-free and serum-containing media. In addition, SV1 caused a considerable stimulation of the ability of MCF-7 cells to grow in semisolid medium, an assay considered diagnostic for cell transformation. Collectively, our findings show that the expression of SV1 confers oncogenic activity and provide further evidence that GHRH operates as a growth factor in breast cancer and probably other cancers as well
    corecore