3 research outputs found

    Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    Get PDF
    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg^+/Dy^+, the electron density, the ground state, and the totaldensity of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate

    J.J.A.M.: Optical emission spectroscopy of metal-halide lamps: radially resolved atomic state distribution functions of dy and hg

    No full text
    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function Í‘ASDFÍ’ of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the Í‘excitationÍ’ temperature, the ion ratio Hg + /Dy + , the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate
    corecore