1,087 research outputs found
Skyrmion and Skyrme-Black holes in de Sitter spacetime
Numerical arguments are presented for the existence of regular and black hole
solutions of the Einstein-Skyrme equations with a positive cosmological
constant. These classical configurations approach asymptotically the de Sitter
spacetime. The main properties of the solutions and the differences with
respect to the asymptotically flat ones are discussed. It particular our
results suggest that, for a positive cosmological constant, the mass evaluated
as timelike infinity in infinite. Special emphasis is set to De Sitter black
holes Skyrmions which display two horizons.Comment: 11 pages, 4 figure
Chandra Spectroscopy Of The Hot Star β Crucis And The Discovery Of A Pre-Main-Sequence Companion
In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74-ks observation of the nearby early B giant, beta Crucis (beta Cru; B0.5 III), with the Chandra High Energy Transmission Grating Spectrometer. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half widths of 150 km s(-1). The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically. It is possible that magnetic channelling could explain the X-ray properties, although no field has been detected on beta Cru. We detected periodic variability in the hard (h nu \u3e 1 keV) X-rays, modulated on the known optical period of 4.58 h, which is the period of the primary beta Cephei pulsation mode for this star. We also have detected, for the first time, an apparent companion to beta Cru at a projected separation of 4 arcsec. This companion was likely never seen in optical images because of the presumed very high contrast between it and beta Cru in the optical. However, the brightness contrast in the X-ray is only 3:1, which is consistent with the companion being an X-ray active low-mass pre-main-sequence star. The companion\u27s X-ray spectrum is relatively hard and variable, as would be expected from a post-T Tauri star. The age of the beta Cru system (between 8 and 10 Myr) is consistent with this interpretation which, if correct, would add beta Cru to the roster of Lindroos binaries - B stars with low-mass pre-main-sequence companions
Chandra Spectroscopy Of The Hot Star β Crucis And The Discovery Of A Pre-Main-Sequence Companion
In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74-ks observation of the nearby early B giant, beta Crucis (beta Cru; B0.5 III), with the Chandra High Energy Transmission Grating Spectrometer. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half widths of 150 km s(-1). The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically. It is possible that magnetic channelling could explain the X-ray properties, although no field has been detected on beta Cru. We detected periodic variability in the hard (h nu \u3e 1 keV) X-rays, modulated on the known optical period of 4.58 h, which is the period of the primary beta Cephei pulsation mode for this star. We also have detected, for the first time, an apparent companion to beta Cru at a projected separation of 4 arcsec. This companion was likely never seen in optical images because of the presumed very high contrast between it and beta Cru in the optical. However, the brightness contrast in the X-ray is only 3:1, which is consistent with the companion being an X-ray active low-mass pre-main-sequence star. The companion\u27s X-ray spectrum is relatively hard and variable, as would be expected from a post-T Tauri star. The age of the beta Cru system (between 8 and 10 Myr) is consistent with this interpretation which, if correct, would add beta Cru to the roster of Lindroos binaries - B stars with low-mass pre-main-sequence companions
Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls
We investigate the properties of interacting Q-balls and boson stars that sit
on top of each other in great detail. The model that describes these solutions
is essentially a (gravitating) two-scalar field model where both scalar fields
are complex. We construct interacting Q-balls or boson stars with arbitrarily
small charges but finite mass. We observe that in the interacting case - where
the interaction can be either due to the potential or due to gravity - two
types of solutions exist for equal frequencies: one for which the two scalar
fields are equal, but also one for which the two scalar fields differ. This
constitutes a symmetry breaking in the model. While for Q-balls asymmetric
solutions have always corresponding symmetric solutions and are thus likely
unstable to decay to symmetric solutions with lower energy, there exists a
parameter regime for interacting boson stars, where only asymmetric solutions
exist. We present the domain of existence for two interacting non-rotating
solutions as well as for solutions describing the interaction between rotating
and non-rotating Q-balls and boson stars, respectively.Comment: 33 pages including 21 figures; v2: version considerably extended: 6
new figures added, equations of motion added, discussion on varying
gravitational coupling added, references adde
MLA Research Agenda. Systematic Review Project. Team Updates Presentation. MLA Annual Meeting Supplement. May 17, 2015
Most of the 15 systematic review teams provided one-page summaries of their progress to date in compiling systematic reviews on one of 15 top-ranked important research projects. This builds upon an earlier Delphi study that was reported here: Eldredge JD, Ascher MT, Holmes HN, Harris MR. The new Medical Library Association research agenda: final results from a three-phase Delphi study. J Med Libr Assoc. 2012 Jul;100(3):214-8. doi: 10.3163/1536-5050.100.3.012. PubMed PMID: 22879811; PubMed Central PMCID: PMC3411260
Fourier-Space Crystallography as Group Cohomology
We reformulate Fourier-space crystallography in the language of cohomology of
groups. Once the problem is understood as a classification of linear functions
on the lattice, restricted by a particular group relation, and identified by
gauge transformation, the cohomological description becomes natural. We review
Fourier-space crystallography and group cohomology, quote the fact that
cohomology is dual to homology, and exhibit several results, previously
established for special cases or by intricate calculation, that fall
immediately out of the formalism. In particular, we prove that {\it two phase
functions are gauge equivalent if and only if they agree on all their
gauge-invariant integral linear combinations} and show how to find all these
linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint
number for reference 22
MLA Research Agenda: Appraising the Best Available Evidence
Offers guidelines for the formation and self-governance of autonomous teams as they conduct systematic reviews related to the MLA Research Agenda
Geodesic motion in the space-time of a cosmic string
We study the geodesic equation in the space-time of an Abelian-Higgs string
and discuss the motion of massless and massive test particles. The geodesics
can be classified according to the particles energy, angular momentum and
linear momentum along the string axis. We observe that bound orbits of massive
particles are only possible if the Higgs boson mass is smaller than the gauge
boson mass, while massless particles always move on escape orbits. Moreover,
neither massive nor massless particles can ever reach the string axis for
non-vanishing angular momentum. We also discuss the dependence of light
deflection by a cosmic string as well as the perihelion shift of bound orbits
of massive particles on the ratio between Higgs and gauge boson mass and the
ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on
null geodesics extended, numerical results adde
- …