4,712 research outputs found

    Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer

    Full text link
    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong whereas at smaller interactions only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.Comment: 9 figures, corrected typo

    Comment on ``Spin Dependent Hopping and Colossal Negative Magnetoresistance in Epitaxial Nd0.52Sr0.48MnO3Nd_{0.52}Sr_{0.48}MnO_{3} Films in Fields up to 50 T''

    Full text link
    Recently Wagner et al. [Phys. Rev. Lett. Vol. 81, P. 3980 (1998)] proposed that Mott's original model be modified to incorporate a hopping barrier which depends on the misorientation between the spins of electrons at the initial and the final states in an elementary process. They further claimed that using the model they can explain the observed scaling behavior-- negative-magnetoresistivity scaling proportional to the Brillouin function B\cal{B} in the ferromagnetic state and to B2{\cal{B}}^2 in the paramagnetic state. In this comment we argue that the modification needed for Mott's original model is different from that proposed by Wagner et al. and further show that our picture will successfully explain the observed scaling in the two regimes.Comment: 1 pag

    Time-dependent natural orbitals and occupation numbers

    Full text link
    We report equations of motion for the occupation numbers of natural spin orbitals and show that adiabatic extensions of common functionals employed in ground-state reduced-density-matrix-functional theory have the shortcoming of leading always to occupation numbers which are independent of time. We illustrate the exact time-dependence of the natural spin orbitals and occupation numbers for the case of electron-ion scattering and for atoms in strong laser fields. In the latter case, we observe strong variations of the occupation numbers in time.Comment: 5 pages, 5 figure

    Quantum coherence and carriers mobility in organic semiconductors

    Full text link
    We present a model of charge transport in organic molecular semiconductors based on the effects of lattice fluctuations on the quantum coherence of the electronic state of the charge carrier. Thermal intermolecular phonons and librations tend to localize pure coherent states and to assist the motion of less coherent ones. Decoherence is thus the primary mechanism by which conduction occurs. It is driven by the coupling of the carrier to the molecular lattice through polarization and transfer integral fluctuations as described by the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent regime are modeled via the Anderson hamiltonian with correlated diagonal and non-diagonal disorder leading to the determination of the carrier localization length. This length defines the coherent extension of the ground state and determines, in turn, the diffusion range in the incoherent regime and thus the mobility. The transfer integral disorder of Troisi and Orlandi can also be incorporated. This model, based on the idea of decoherence, allowed us to predict the value and temperature dependence of the carrier mobility in prototypical organic semiconductors that are in qualitative accord with experiments

    Fullerene graphs have exponentially many perfect matchings

    Full text link
    A fullerene graph is a planar cubic 3-connected graph with only pentagonal and hexagonal faces. We show that fullerene graphs have exponentially many perfect matchings.Comment: 7 pages, 3 figure

    Back-to-back correlations of high p_T hadrons in relativistic heavy ion collisions

    Get PDF
    We investigate the suppression factor and the azimuthal correlation function for high pTp_T hadrons in central Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV by using a dynamical model in which hydrodynamics is combined with explicitly traveling jets. We study the effects of parton energy loss in a hot medium, intrinsic kTk_T of partons in a nucleus, and pp_{\perp} broadening of jets on the back-to-back correlations of high pTp_T hadrons. Parton energy loss is found to be a dominant effect on the reduction of the away-side peaks in the correlation function.Comment: 4 pages, 4 figures; version to appear in Phys. Rev. Let

    Excitations in time-dependent density-functional theory

    Full text link
    An approximate solution to the time-dependent density functional theory (TDDFT) response equations for finite systems is developed, yielding corrections to the single-pole approximation. These explain why allowed Kohn-Sham transition frequencies and oscillator strengths are usually good approximations to the true values, and why sometimes they are not. The approximation yields simple expressions for G\"orling-Levy perturbation theory results, and a method for estimating expectation values of the unknown exchange-correlation kernel.Comment: 4 pages, 1 tabl

    Photoionization and transient Wannier-Stark ladder in silicon: First-principles simulations versus Keldysh theory

    Get PDF
    Nonlinear photoionization of dielectrics and semiconductors is widely treated in the framework of the Keldysh theory whose validity is limited to photon energies that are small compared to the band gap and relatively low laser intensities. The time-dependent density functional theory (TDDFT) simulations, which are free of these limitations, enable one to gain insight into nonequilibrium dynamics of the electronic structure. Here we apply TDDFT to investigate the photoionization of silicon crystal by ultrashort laser pulses in a wide range of laser wavelengths and intensities and compare the results with predictions of the Keldysh theory. Photoionization rates derived from the simulations considerably exceed the data obtained with the Keldysh theory within the validity range of the latter. Possible reasons for the discrepancy are discussed and we provide fundamental data on the photoionization rates beyond the limits of the Keldysh theory. By investigating the features of the Stark shift as a function of photon energy and laser field strength, a manifestation of the transient Wannier-Stark ladder states is revealed, which become blurred with increasing laser field strength. Finally, it is shown that the TDDFT simulations can potentially provide reliable data on the electron damping time that is of high importance for large-scale modeling

    Municipal Real Estate deployed as a capital asset

    Get PDF
    Abstract The aim of this study is to introduce the principles of Corporate Real Estate Management (CREM) within the municipal organization. It is presumed that, looking at the private sector’s accomplishments in this field, these principles will allow a city council to deploy their real estate in a more strategic manner. In this study a model has been created for implementing so-called Municipal Real Estate Management (MREM) within the municipal organization on the desired level and adjusting the municipal real estate portfolio accordingly. This introduction of MREM will contribute to offering adequate accommodation to the different consumers, which heightens customer satisfaction. At the same time, it will add to the company result, balancing costs and benefits and delivering added value through a better control of risks and creating economies of scale
    corecore