310 research outputs found
Circulating tumor cells (CTC) are associated with defects in adaptive immunity in patients with inflammatory breast cancer
BACKGROUND:
Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are prognostic in primary and metastatic breast cancer. Peripheral blood (PB) immune cells contribute to an unfavorable microenvironment for CTC survival. This study aimed to correlate CTCs with the PB T-cell immunophenotypes and functions of patients with inflammatory breast cancer (IBC).
METHODS:
This study included 65 IBC patients treated at the MD Anderson Cancer Center. PB was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch(®), and T cell phenotype and function by flow cytometry; the results were correlated with CTCs and clinical outcome.
RESULTS:
At least 1 CTC (≥1) or ≥5 CTCs was detected in 61.5% or 32.3% of patients, respectively. CTC count did not correlate with total lymphocytes; however, patients with ≥1 CTC or ≥5 CTCs had lower percentages (%) of CD3+ and CD4+ T cells compared with patients with no CTCs or <5 CTCs, respectively. Patients with ≥1 CTC had a lower percentage of T-cell receptor (TCR)-activated CD8+ T cells synthesizing TNF-α and IFN-γ and a higher percentage of T-regulatory lymphocytes compared to patients without CTCs. In multivariate analysis, tumor grade and % CD3+ T-cells were associated with ≥1 CTC, whereas ≥5 CTC was associated with tumor grade, stage, % CD3+ and % CD4+ T cells, and % TCR-activated CD8 T-cells synthesizing IL-17.
CONCLUSIONS:
IBC patients with CTCs in PB had abnormalities in adaptive immunity that could potentially impact tumor cell dissemination and initiation of the metastatic cascade
Non-Markovian dynamics in a spin star system: The failure of thermalization
In most cases, a small system weakly interacting with a thermal bath will
finally reach the thermal state with the temperature of the bath. We show that
this intuitive picture is not always true by a spin star model where non-Markov
effect predominates in the whole dynamical process. The spin star system
consists a central spin homogeneously interacting with an ensemble of identical
noninteracting spins. We find that the correlation time of the bath is
infinite, which implies that the bath has a perfect memory, and that the
dynamical evolution of the central spin must be non- Markovian. A direct
consequence is that the final state of the central spin is not the thermal
state equilibrium with the bath, but a steady state which depends on its
initial state.Comment: 8 page
Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination.
IntroductionTraditional factors currently used for prognostic stratification do not always predict adequately treatment response and disease evolution in advanced breast cancer patients. Therefore, the use of blood-based markers, such as circulating tumor cells (CTCs), represents a promising complementary strategy for disease monitoring. In this retrospective study, we explored the role of CTC counts as predictors of disease evolution in breast cancer patients with limited metastatic dissemination.Methods492 advanced breast cancer patients who had a CTC count assessed by CellSearch prior to starting a new line of systemic therapy were eligible for this analysis. Using the threshold of 5 cells/7.5 mL of blood, pretreatment CTC counts were correlated in the overall population with metastatic site distribution, evaluated at baseline and at the time of treatment failure, using the Fisher¿s Exact test. Time to visceral progression, as well as, time to the development of new metastatic lesions and sites were estimated in patients with non-visceral metastases and with single-site metastatic disease, respectively, by the Kaplan-Meier method. Survival times were compared among groups according to pretreatment CTC count by log-Rank test.ResultsIn the overall population, pretreatment CTCs¿¿¿5 were associated with increased baseline number of metastatic sites, compared with CTCs
Association Between Increased Platelet P-Selectin Expression and Obesity in Patients With Type 2 Diabetes: A BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes) substudy
OBJECTIVE- To determine whether obesity increases platelet reactivity and thrombin activity in patients with type 2 diabetes plus stable coronary artery disease. RESEARCH DESIGN AND METHODS- We assessed platelet reactivity and markers of thrombin generation and activity in 193 patients from nine clinical sites of the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Blood taken at the time of enrollment was used for assay of the concentration of prothrombin fragment 1.2 (PT1.2, released when prothrombin is activated) and fibrinopeptide A (FPA, released when fibrinogen is cleaved). Platelet activation was identified with the use of flow cytometry in response to 0, 0.2, and 1 mu mol/l adenosine diphosphate (ADP). RESULTS- Concentrations of FPA, PT1.2, and platelet activation in the absence of agonist were low. Greater BMI was associated with higher platelet reactivity in response to 1 mu m ADP as assessed by surface expression of P-selectin (r = 0.29, P < 0.0001) but not reflected by the binding of fibrinogen to activated glycoprotein IIb-IIIa. BMI was not associated with concentrations of FPA or PT1.2. Platelet reactivity correlated negatively with A1C (P < 0.04), was not related to the concentration Of triglycerides in blood, and did not correlate with the concentration of C-reactive peptide. CONCLUSIONS- Among patients enrolled in this substudy of BARI 2D, a greater BMI was associated with higher platelet reactivity at the time of enrollment. Our results suggest that obesity and insulin resistance that accompanies obesity may influence platelet reactivity in patients with type 2 diabetes.National Heart, Lung, and Blood Institute (NHLBI/NIH)[R01 HL69146]National Heart, Lung, and Blood Institute (NHLBI/NIH)[R01 HL71306]NHLBI[U01 HL061746]NHLBI[U01 HL06171748]NHLBI[U01 HL06384]National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH)[HL061744
The Treatment of Uncertainties in Reactive Pollution Dispersion Models at Urban Scales
The ability to predict NO2 concentrations ([NO¬2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO¬2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, a Reynolds Averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO¬2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO¬2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO+O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO¬2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was found to be the background wind direction. The study highlights the key parameters required for reliable [NO¬2] estimations suggesting that accurate reference measurements for wind direction should be a critical part of air quality assessments for in-street locations. It also highlights the importance of street scale chemical processes in forming road-side [NO¬2], particularly for regions of high NOx emissions such as close to traffic queues
KIR Polymorphisms Modulate Peptide-Dependent Binding to an MHC Class I Ligand with a Bw6 Motif
Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets
Human NK Cells Differ More in Their KIR2DL1-Dependent Thresholds for HLA-Cw6-Mediated Inhibition than in Their Maximal Killing Capacity
In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-γ secretion are not correlated. In contrast, the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after being activated by a first encounter with the same or a different target cell, but not by models which lack this feature
Phenotypic Studies of Natural Killer Cell Subsets in Human Transporter Associated with Antigen Processing Deficiency
Peripheral blood natural killer (NK) cells from patients with transporter associated with antigen processing (TAP) deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56bright cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical symptoms and to individuals with chronic inflammatory diseases other than TAP deficiency (chronic lung diseases or vasculitis). Peripheral blood mononuclear cells isolated from venous blood were stained with fluorochrome-conjugated antibodies and the phenotype of NK cells was analyzed by flow cytometry. In addition, 51Chromium release assays were performed to assess the cytotoxic activity of NK cells. In the symptomatic patients, CD56bright NK cells represented 28% and 45%, respectively, of all NK cells (higher than in healthy donors). The patients also displayed a higher percentage of CD56dimCD16− NK cells than controls. Interestingly, this unusual NK cell subtype distribution was not found in the two asymptomatic TAP-deficient cases, but was instead present in several of the other patients. Over-expression of the inhibitory receptor CD94/NKG2A by TAP-deficient NK cells was confirmed and extended to the inhibitory receptor ILT2 (CD85j). These inhibitory receptors were not involved in regulating the cytotoxicity of TAP-deficient NK cells. We conclude that expansion of the CD56bright NK cell subtype in peripheral blood is not a hallmark of TAP deficiency, but can be found in other diseases as well. This might reflect a reaction of the immune system to pathologic conditions. It could be interesting to investigate the relative distribution of NK cell subsets in various respiratory and autoimmune diseases
N-Acetylcysteine inhibits platelet-monocyte conjugation in patients with type 2 diabetes with depleted intraplatelet glutathione: a randomised controlled trial
AIMS/HYPOTHESIS: The aim of this study was to determine whether oral dosing with N-acetylcysteine (NAC) increases intraplatelet levels of the antioxidant, glutathione (GSH), and reduces platelet–monocyte conjugation in blood from patients with type 2 diabetes. METHODS: In this placebo-controlled randomised crossover study, the effect of oral NAC dosing on platelet–monocyte conjugation and intraplatelet GSH was investigated in patients with type 2 diabetes (eligibility criteria: men or post-menopausal women with well-controlled diabetes (HbA(1c) < 10%), not on aspirin or statins). Patients (n = 14; age range 43–79 years, HbA(1c) = 6.9 ± 0.9% [52.3 ± 10.3 mmol/mol]) visited the Highland Clinical Research Facility, Inverness, UK on day 0 and day 7 for each arm of the study. Blood was sampled before and 2 h after oral administration of placebo or NAC (1,200 mg) on day 0 and day 7. Patients received placebo or NAC capsules for once-daily dosing on the intervening days. The order of administration of NAC and placebo was allocated by a central office and all patients and research staff involved in the study were blinded to the allocation until after the study was complete and the data fully analysed. The primary outcome for the study was platelet–monocyte conjugation. RESULTS: Oral NAC reduced platelet–monocyte conjugation (from 53.1 ± 4.5% to 42.5 ± 3.9%) at 2 h after administration and the effect was maintained after 7 days of dosing. Intraplatelet GSH was raised in individuals with depleted GSH and there was a negative correlation between baseline intraplatelet GSH and platelet–monocyte conjugation. There were no adverse events. CONCLUSIONS/INTERPRETATION: The NAC-induced normalisation of intraplatelet GSH, coupled with a reduction in platelet–monocyte conjugation, suggests that NAC might help to reduce atherothrombotic risk in type 2 diabetes. FUNDING: Chief Scientist Office (CZB/4/622), Scottish Funding Council, Highlands & Islands Enterprise and European Regional Development Fund. TRIAL REGISTRATION: isrctn.org ISRCTN89304265 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-012-2685-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users
NK Cell Terminal Differentiation: Correlated Stepwise Decrease of NKG2A and Acquisition of KIRs
BACKGROUND: Terminal differentiation of NK cells is crucial in maintaining broad responsiveness to pathogens and discriminating normal cells from cells in distress. Although it is well established that KIRs, in conjunction with NKG2A, play a major role in the NK cell education that determines whether cells will end up competent or hyporesponsive, the events underlying the differentiation are still debated. METHODOLOGY/PRINCIPAL FINDINGS: A combination of complementary approaches to assess the kinetics of the appearance of each subset during development allowed us to obtain new insights into these terminal stages of differentiation, characterising their gene expression profiles at a pan-genomic level, their distinct surface receptor patterns and their prototypic effector functions. The present study supports the hypothesis that CD56dim cells derive from the CD56bright subset and suggests that NK cell responsiveness is determined by persistent inhibitory signals received during their education. We report here the inverse correlation of NKG2A expression with KIR expression and explore whether this correlation bestows functional competence on NK cells. We show that CD56dimNKG2A-KIR+ cells display the most differentiated phenotype associated to their unique ability to respond against HLA-E+ target cells. Importantly, after IL-12+IL-18 stimulation, reacquisition of NKG2A strongly correlates with IFN-gamma production in CD56dimNKG2A- NK cells. CONCLUSIONS/SIGNIFICANCE: Together, these findings call for the reclassification of mature human NK cells into distinct subsets and support a new model, in which the NK cell differentiation and functional fate are based on a stepwise decrease of NKG2A and acquisition of KIRs
- …