33 research outputs found

    Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium botulinum </it>strains can be divided into four physiological groups that are sufficiently diverged to be considered as separate species. Here we present the first complete genome of a <it>C. botulinum </it>strain from physiological group III, causing animal botulism. We also compare the sequence to three new draft genomes from the same physiological group.</p> <p>Results</p> <p>The 2.77 Mb chromosome was highly conserved between the isolates and also closely related to that of <it>C. novyi</it>. However, the sequence was very different from the human <it>C. botulinum </it>group genomes. Replication-directed translocations were rare and conservation of synteny was high. The largest difference between <it>C. botulinum </it>group III isolates occurred within their surprisingly large plasmidomes and in the pattern of mobile elements insertions. Five plasmids, constituting 13.5% of the total genetic material, were present in the completed genome. Interestingly, the set of plasmids differed compared to other isolates. The largest plasmid, the botulinum-neurotoxin carrying prophage, was conserved at a level similar to that of the chromosome while the medium-sized plasmids seemed to be undergoing faster genetic drift. These plasmids also contained more mobile elements than other replicons. Several toxins and resistance genes were identified, many of which were located on the plasmids.</p> <p>Conclusions</p> <p>The completion of the genome of <it>C. botulinum </it>group III has revealed it to be a genome with dual identity. It belongs to the pathogenic species <it>C. botulinum</it>, but as a genotypic species it should also include <it>C. novyi </it>and <it>C. haemolyticum</it>. The genotypic species share a conserved chromosomal core that can be transformed into various pathogenic variants by modulation of the highly plastic plasmidome.</p

    Static secondary ion mass spectrometry investigation of corrosion inhibitor Irgamet®39 on copper surfaces treated in power transformer insulating oil

    No full text
    Static secondary ion mass spectrometry was used to study the corrosion inhibitor Irgamet®39 on the surface of copper treated in insulating oils and the effect of temperature changes, by means of temperature programmed desorption experiments under vacuum, on metal coverage. Four commercial oils, both corrosive and non-corrosive, showed no significant influence on the stability of the tolyltriazole layer and the energy of its main desorption event from copper was calculated around 100 kJ mol?1. Finally, an example of ion imaging as diagnostic tool to track the distribution of corrosion inhibitor and by-products in decommissioned or failed power transformers is described
    corecore