1,158 research outputs found

    AC-Tolerant Multifilament Coated Conductors

    Full text link
    We report the magnetization losses in an experimental multifilament coated conductor. A 4 mm wide and 10 cm long YBCO coated conductor was subdivided into eight 0.5 mm wide filaments by laser ablation and subjected to post-ablation treatment. As the result, the hysteresis loss was reduced, as expected, in proportion to the width of the filaments. However, the coupling loss was reduced dramatically, and became practically negligible, in the range of a sweep rate up to 20 T/s. This represents a drastic improvement on previous multifilament conductors in which often the coupling losses became equal to the hysteresis loss at a sweep rate as low as 3-4 T/s. These results demonstrate that there is an effective and practical way to suppress coupling losses in coated multifilament conductors.Comment: This paper is based on a talk given at 2006 Applied Superconductivity Conference in Seattle, WA (August 27-September 1, 2006). To be published in IEEE Trans. Appl. Superconductivit

    Magnetization Losses in Multifilament Coated Superconductors

    Full text link
    We report the results of a study of the magnetization losses in experimental multifilament, as well as control (uniform), coated superconductors exposed to time-varying magnetic field of various frequencies. Both the hysteresis loss, proportional to the sweep rate of the applied magnetic field, and the coupling loss, proportional to the square of the sweep rate, have been observed. A scaling is found that allows us to quantify each of these contributions and extrapolate the results of the experiment beyond the envelope of accessible field amplitude and frequency. The combined loss in the multifilament conductor is reduced by about 90% in comparison with the uniform conductor at full field penetration at sweep rate as high as 3T/s

    Hadron Physics and Confinement Physics in Lattice QCD

    Full text link
    We are aiming to construct Quark Hadron Physics and Confinement Physics based on QCD. Using SU(3)c_c lattice QCD, we are investigating the three-quark potential at T=0 and T0T \ne 0, mass spectra of positive and negative-parity baryons in the octet and the decuplet representations of the SU(3) flavor, glueball properties at T=0 and T0T \ne 0. We study also Confinement Physics using lattice QCD. In the maximally abelian (MA) gauge, the off-diagonal gluon amplitude is strongly suppressed, and then the off-diagonal gluon phase shows strong randomness, which leads to a large effective off-diagonal gluon mass, Moff1.2GeVM_{\rm off} \simeq 1.2 {\rm GeV}. Due to the large off-diagonal gluon mass in the MA gauge, infrared QCD is abelianized like nonabelian Higgs theories. In the MA gauge, there appears a macroscopic network of the monopole world-line covering the whole system. From the monopole current, we extract the dual gluon field BμB_\mu, and examine the longitudinal magnetic screening. We obtain mBm_B \simeq 0.5 GeV in the infrared region, which indicates the dual Higgs mechanism by monopole condensation. From infrared abelian dominance and infrared monopole condensation, low-energy QCD in the MA gauge is described with the dual Ginzburg-Landau (DGL) theory.Comment: Invited talk given at International Symposium on Hadrons and Nuclei, Seoul, Korea, 20-22 Feb 200

    Noise invoked resonances near a homoclinic bifurcation in the glow discharge plasma

    Full text link
    Stochastic Resonance (SR) and Coherence Resonance (CR) have been studied experimentally in the discharge plasma close to a homoclinic bifurcation. For the SR phenomena, it is observed that a superimposed subthreshold periodic signal can be recovered via stochastic modulations of the discharge voltage. Furthermore, it is realized that even in the absence of a subthreshold deterministic signal, the system dynamics can be recovered and optimized using noise. This effect is defined as CR in the literature. In the present experiments, induction of SR and CR are quantified using the Absolute Mean Difference (AMD) and Normalized Variance (NV) techniques respectively. AMD is a new statistical tool to quantify regularity in the stochastic resonance and is independent of lag.Comment: 6 pag

    Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires

    Get PDF
    The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as “dynamic resistance.” Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H-formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, Ic(B), of the wire. It is also shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until Jc is exceeded and flux-flow resistance occurs

    Effects of Gamma Ray Bursts in Earth Biosphere

    Full text link
    We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and show a first modeling of the spectral reduction of light by NO2 formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modelingComment: Accepted for publication in Astrophysics & Space Scienc
    corecore