9 research outputs found

    Sub kGy photon irradiation alterations in graphite

    Get PDF
    Present work concerns polymer pencil-lead graphite (PPLG) and the potential use of these in elucidating irradiation-driven structural alterations. The study provides detailed analysis of radiation-induced structural interaction changes and the associated luminescence that originates from the energy absorption. Thermally stimulated emission from the different occupied defect energy levels reflects the received radiation dose, different for the different diameter PPLGs. The PPLG samples have been exposed to photon irradiation, specifically x-ray doses ranging from 1 to 10 Gy, extended to 30–200 Gy through use of a60Co gamma-ray source. Trapping parameters such as order of kinetics, activation energy and frequency factor are estimated using Chen's peak-shape method for a fixed-dose of 30 Gy. X-ray diffractometry was used to characterize the crystal structure of the PPLG, the aim being to identify the degree of structural order, atomic spacing and lattice constants of the various irradiated PPLG samples. The mean atomic spacing and degree of structural order for the different diameter PPLG are found to be 0.3332 nm and 26.6° respectively. Photoluminescence spectra from PPLG arising from diode laser excitation at 532 nm consist of two adjacent peaks, 602 nm (absorption) and 1074 nm (emission), with mean energy band gap values within the range 1.113–1.133 eV

    Tailored Ge-doped fibres for passive electron radiotherapy dosimetry

    Get PDF
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications

    Recent advances in silica glass optical fiber for dosimetry applications

    Get PDF
    In this paper, we review the highly promising silica glass, fabricated as doped and undoped optical fiber for intended use in radiation dosimetry. The dosimetry techniques reviewed here, underpinned by intrinsic and extrinsic defects in silica glass, focus on Thermoluminescence (TL), Optically Stimulated Luminescence (OSL) and Radioluminescence (RL), with occasional references to the much more established Radiation Induced Attenuation (RIA). The other focus in this review is on the various materials that have been reported earlier as dopants and modifiers used in silica glass optical fiber radiation dosimeters. This article also elaborates on recently reported optical fiber structures, namely, cylindrical fibers, photonic crystal fibers and flat fibers, as well as dimensions and shapes used for optimization of dosimeter performance. The various types of optical fiber radiation dosimeters are subsequently reviewed for various applications ranging from medical dosimetry such as in external beam radiotherapy, brachytherapy and diagnostic imaging, as well as in industrial processing and space dosimetry covering a dynamic dose range from μGy to kGy. Investigated dosimetric characteristics include reproducibility, fading, dose response, reciprocity between luminescence yield to dose-rate and energy dependence. The review is completed by a brief discussion on limitations and future developments in optical fiber radiation dosimetry

    Defect characteristic of oxygen-deficient Ge-doped preform using photoluminescence spectroscopy

    No full text
    Study has been made of the Photoluminescence properties of Ge-doped silica preforms fabricated using the MCVD process and subsequently subjected to γ-ray irradiation. The photoluminescence emissions pointed to the presence of defects related to oxygen vacancies. Two types of preform were fabricated, obtained using a different flow rate and deposition temperature for each case. Results from the absorption spectra of the samples named as P1 and P2, show a signature absorption peak at 5.1 eV and 6.8 eV, indicative of oxygen-deficient and oxygen-rich defects respectively. Photoluminescence investigation have been carried out before and after the irradiation process with both samples reveal two main peaks at 1.5 eV. The highest intensity at 1.5 eV is known as an interaction between the Non- Bridging Oxygen Hole Centre (NBHOC) with the presence of impurity in the glass matrix. Upon irradiation, weak peak can be observed at 1.8 eV, sample P1 and P2, the PL intensity increases by a factor of 20 × and 50 × , respectively. This peak is associated with the oxygen deficient state in the sample. The peak referring to defect known as Germanium Lone Pair Centre (GLPC) are observed in both samples, peak shown at 3.1 eV, regardless of the Germanium Oxygen Deficient Centre (GODC) content. In regard to this, it can be concluded that this defect is generated independently in all germanium samples and are not correlated with the GODC band observed in the absorption band

    Polymer pencil lead graphite for in vivo radiation dosimetry

    No full text
    This work explores the use of polymer pencil‑lead graphite (PPLG) as a novel material for passive radiation dosimetry, analysis including state-of-the-art techniques. The versatility of carbon materials in such applications arises in great part from the strong dependence of their physical properties on the ratio of sp2 (graphite-like) to sp3 (diamond-like) bonds. Investigation has been made of key dosimetric properties of commercially available PPLG, specifically the thermoluminescence (TL) glow curve, dose response, energy dependence, effective atomic number, sensitivity and fading. Four different diameter PPLG rods have been studied, their response to photon irradiations being examined. The PPLGs have been found to provide good linear response within the dose range 10 to 200 Gy, sensitivity increasing inversely with PPLG rod diameter. With a standard deviation <3%, all samples showed excellent reproducibility. The fading study was also calculated, the stability of TL signal being examined at room temperatures in dark condition. Vibrational spectra of the irradiated PPLGs were determined using a 532 nm laser Raman spectrometer while bulk resistance, an indirect measure of dosimetry, was studied via electrochemical impedance spectroscopy. The various dose response evaluations reveal the 2B hardness polymer pencil‑lead to possess favourable dosimetric features, suited to passive sensing of radiation for a range of ionizing radiation applications, medical and sterilizational work included

    Tailored Ge-doped fibres for passive electron radiotherapy dosimetry.

    No full text
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications

    Thermoluminescence yield of neutron irradiated Gd:Mg-Doped silica glass

    No full text
    The thermoluminescence yield of silica glass doped with Gd2O3 and MgO is investigated as a potential material for neutron dose measurement. The dosimetric materials used herein were prepared via the sol-gel route with concentration of rare earth metal oxides varying from 1 to 10 mol%. Reactor irradiations were made at 750 kW thermal power, producing thermal, epi-thermal and fast neutron fluxes of 5.61 × 1012, 2.51 × 1012, 2.58 × 1012 n/c

    Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software

    No full text
    The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors
    corecore