180 research outputs found

    Statistical PT-symmetric lasing in an optical fiber network

    Full text link
    PT-symmetry in optics is a condition whereby the real and imaginary parts of the refractive index across a photonic structure are deliberately balanced. This balance can lead to a host of novel optical phenomena, such as unidirectional invisibility, loss-induced lasing, single-mode lasing from multimode resonators, and non-reciprocal effects in conjunction with nonlinearities. Because PT-symmetry has been thought of as fragile, experimental realizations to date have been usually restricted to on-chip micro-devices. Here, we demonstrate that certain features of PT-symmetry are sufficiently robust to survive the statistical fluctuations associated with a macroscopic optical cavity. We construct optical-fiber-based coupled-cavities in excess of a kilometer in length (the free spectral range is less than 0.8 fm) with balanced gain and loss in two sub-cavities and examine the lasing dynamics. In such a macroscopic system, fluctuations can lead to a cavity-detuning exceeding the free spectral range. Nevertheless, by varying the gain-loss contrast, we observe that both the lasing threshold and the growth of the laser power follow the predicted behavior of a stable PT-symmetric structure. Furthermore, a statistical symmetry-breaking point is observed upon varying the cavity loss. These findings indicate that PT-symmetry is a more robust optical phenomenon than previously expected, and points to potential applications in optical fiber networks and fiber lasers.Comment: Submitted to Nature Communications, Pages 1-19: Main manuscript; Pages 20-38: Supplementary material

    Integrable nonlinear parity-time symmetric optical oscillator

    Full text link
    The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time symmetric systems. Unlike other saturable parity time symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.Comment: 6 pages, 5 figures, accepted for publicatio

    Nonlinear reversal of PT symmetric phase transition in a system of coupled semiconductor micro-ring resonators

    Full text link
    A system of two coupled semiconductor-based resonators is studied when lasing around an exceptional point. We show that the presence of nonlinear saturation effects can have important ramifications on the transition behavior of this system. In sharp contrast with linear PT-symmetric configurations, nonlinear processes are capable of reversing the order in which the symmetry breaking occurs. Yet, even in the nonlinear regime, the resulting non-Hermitian states still retain the structural form of the corresponding linear eigenvectors expected above and below the phase transition point. The conclusions of our analysis are in agreement with experimental data.Comment: 9 pages, 8 figure

    Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion

    Get PDF
    We show that a two-level non-Hermitian Hamiltonian with constant off-diagonal exchange elements can be analyzed exactly when the underlying exceptional point is perfectly encircled in the complex plane. The state evolution of this system is explicitly obtained in terms of an ensuing transfer matrix, even for large encirclements, regardless of adiabatic conditions. Our results clearly explain the direction-dependent nature of this process and why in the adiabatic limit its outcome is dominated by a specific eigenstate—irrespective of initial conditions. Moreover, numerical simulations suggest that this mechanism can still persist in the presence of nonlinear effects. We further show that this robust process can be harnessed to realize an optical omnipolarizer: a configuration that generates a desired polarization output regardless of the input polarization state, while from the opposite direction it always produces the counterpart eigenstate.United States. Army Research Office. Institute for Soldier Nanotechnologies (Grant W911NF-13-D-0001)United States-Israel Binational Science Foundation (Grant 2013508

    Children's Speech Recognition through Discrete Token Enhancement

    Full text link
    Children's speech recognition is considered a low-resource task mainly due to the lack of publicly available data. There are several reasons for such data scarcity, including expensive data collection and annotation processes, and data privacy, among others. Transforming speech signals into discrete tokens that do not carry sensitive information but capture both linguistic and acoustic information could be a solution for privacy concerns. In this study, we investigate the integration of discrete speech tokens into children's speech recognition systems as input without significantly degrading the ASR performance. Additionally, we explored single-view and multi-view strategies for creating these discrete labels. Furthermore, we tested the models for generalization capabilities with unseen domain and nativity dataset. Results reveal that the discrete token ASR for children achieves nearly equivalent performance with an approximate 83% reduction in parameters.Comment: Accepted at Interspeech 202

    Parity-time-symmetric coupled microring lasers operating around an exceptional point

    Full text link
    The behavior of a parity-time (PT) symmetric coupled microring system is studied when operating in the vicinity of an exceptional point. Using the abrupt phase transition around this point, stable single-mode lasing is demonstrated in spectrally multi-moded micro-ring arrangements.Comment: 5 pages, 6 figure

    Engineering Interaction Dynamics in Active Resonant Photonic Structures

    Full text link
    The collective response of a system is profoundly shaped by the interaction dynamics between its constituent elements. In physics, tailoring these interactions can enable the observation of unusual phenomena that are otherwise inaccessible in standard settings, ranging from the possibility of a Kramer's degeneracy even in the absence of spin to the breakdown of the bulkboundary correspondence. Here, we show how such tailored asymmetric coupling terms can be realized in photonic integrated platforms by exploiting non-Hermitian concepts. In this regard, we introduce a generalized photonic molecule composed of a pair of microring resonators with internal S-bends connected via two directional couplers and a link waveguide. By judiciously designing the parameters of this system, namely the length of the links and the power division ratio of the directional couplers, we experimentally show the emergence of Hermitian and non-Hermitian type exchange interactions. The ramifications of such coupling dynamics are then studied in 1D chain and ring-type active lattices. Our findings establish the proposed structure as a promising building block for the realization of a variety of phenomena, especially those associated with phase locking in laser arrays and non-Hermitian topological lattices
    corecore