6,127 research outputs found
Wave propagation in two-dimensional periodic lattices
International audiencePlane wave propagation in infinite two-dimensional periodic lattices is investigated using Floquet-Bloch principles. Frequency bandgaps and spatial filtering phenomena are examined in four representative planar lattice topologies: hexagonal honeycomb, Kagomé lattice, triangular honeycomb, and the square honeycomb. These topologies exhibit dramatic differences in their long-wavelength deformation properties. Long-wavelength asymptotes to the dispersion curves based on homogenization theory are in good agreement with the numerical results for each of the four lattices. The slenderness ratio of the constituent beams of the lattice (or relative density) has a significant influence on the band structure. The techniques developed in this work can be used to design lattices with a desired band structure. The observed spatial filtering effects due to anisotropy at high frequencies (short wavelengths) of wave propagation are consistent with the lattice symmetries
Radical Artificial Intelligence: A Postmodern Approach
The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam
Mercury, Methylmercury, and Other Constituents in Sediment and Water from Seasonal and Permanent Wetlands in the Cache Creek Settling Basin and Yolo Bypass, Yolo County, California, 2005−06
This report presents surface water and surface (top 0-2 cm) sediment geochemical data collected during 2005-2006, as part of a larger study of mercury (Hg) dynamics in seasonal and permanently flooded wetland habitats within the lower Sacramento River basin, Yolo County, California. The study was conducted in two phases. Phase I represented reconnaissance sampling and included three locations within the Cache Creek drainage basin; two within the Cache Creek Nature Preserve (CCNP) and one in the Cache Creek Settling Basin (CCSB) within the creek’s main channel near the southeast outlet to the Yolo Bypass. Two additional downstream sites within the Yolo Bypass Wildlife Area (YBWA) were also sampled during Phase I, including one permanently flooded wetland and one seasonally flooded wetland, which had began being flooded only 1–2 days before Phase I sampling.
Results from Phase I include: (a) a negative correlation between total mercury (THg) and the percentage of methylmercury (MeHg) in unfiltered surface water; (b) a positive correlation between sediment THg concentration and sediment organic content; (c) surface water and sediment THg concentrations were highest at the CCSB site; (d) sediment inorganic reactive mercury (Hg(II)R) concentration was positively related to sediment oxidation-reduction potential and negatively related to sediment acid volatile sulfur (AVS) concentration; (e) sediment Hg(II)R concentrations were highest at the two YBWA sites; (f) unfiltered surface water MeHg concentration was highest at the seasonal wetland YBWA site, and sediment MeHg was highest at the permanently flooded YBWA site; (g) a 1,000-fold increase in sediment pore water sulfate concentration was observed in the downstream transect from the CCNP to the YBWA; (h) low sediment pore water sulfide concentrations (μmol/L) across all sites; and (i) iron (Fe) speciation data suggest a higher potential for microbial Fe(III)-reduction in the YBWA compared to the CCSB.
Phase II sampling did not include the original three Cache Creek sites, but instead focused on the original two sites within the YBWA and a similarly paired set of seasonally and permanently flooded wetland sites within the CCSB. Sediment sampling at the YBWA and CCSB occurred approximately 28 days and 52 days, respectively, after the initial flooding of the respective seasonal wetlands, and again towards the end of the seasonal flooding period (end of May 2006). Results from Phase II sampling include: (a) sediment MeHg concentration and the percentage of THg as MeHg (%MeHg) in unfiltered surface waters were generally higher in the YBWA compared to the CCSB; (b) suspended sediment concentration (SCC) in surface water was positively correlated with both THg and MeHg in unfiltered water across all sites, although the relationship between SCC and MeHg differed for the two regions, suggesting local MeHg sources; (c) MeHg concentration in unfiltered surface water was positively correlated to sediment MeHg concentrations across all sites, supporting the suggestion of unique local (sediment) sources of MeHg to the water column; (d) THg concentration in filtered water was positively correlated with both total Fe and dissolved organic carbon (DOC), offering additional support for the role of these constituents in the partitioning of THg between particulate and dissolved phases; (e) flooding of the YBWA seasonal wetland resulted in a rapid and significant (5-fold) rise in sediment MeHg concentration within 3–4 weeks following inundation; and (f) temporal changes in sediment S and Fe speciation suggest that rates of both microbial sulfate reduction and Fe(III)-reduction were significantly higher at YBWA, compared to CCSB, during the period between flooding and drying.
The geochemical data presented in this report indicate that (a) strong spatial and temporal differences in Hg speciation and transformations can occur within the range of wetland habitats found in the lower Sacramento River basin; (b) flooding of seasonal wetlands can be accompanied by a rapid increase in benthic MeHg production and the release of previously formed MeHg (generated during or since the previous flooding season) to the overlying water column; (c) S and Fe chemistry, and associated microbial reduction pathways, play an important role in mediating the speciation and transformation of Hg in these wetland habitats; (d) hydroperiod is a primary forcing function in mediating MeHg production among various wetland types; and (e) MeHg production appears to be more active in the YBWA compared to the CCSB
Analysis of hydrogen diffusion in the three stage electro-permeation test
The presence of hydrogen traps within a metallic alloy influences the rate of
hydrogen diffusion. The electro-permeation (EP) test can be used to assess
this: the permeation of hydrogen through a thin metallic sheet is measured by
suitable control of hydrogen concentration on the front face and by recording
the flux of hydrogen that exits the rear face. Additional insight is achieved
by the more sophisticated three stage EP test: the concentration of free
lattice hydrogen on the front face is set to an initial level, is then dropped
to a lower intermediate value and is then restored to the initial level. The
flux of hydrogen exiting the rear face is measured in all three stages of the
test. In the present study, a transient analysis is performed of hydrogen
permeation in a three stage EP test, assuming that lattice diffusion is
accompanied by trapping and de-trapping. The sensitivity of the three stage EP
response to the depth and density of hydrogen traps is quantified. A
significant difference in permeation response can exist between the first and
third stages of the EP test when the alloy contains a high number density of
deep traps
Lo-fi prototyping to design interactive-tabletop applications for children
Interactive tabletops are an exiting new platform for supporting children's collaboration. With design guidelines and standardized interaction principles still immature, there is a considerable need for iterative prototyping to define the task and interface. Lo-fi prototypes-using cardboard, paper, etc.- are easy to develop, flexible to adjust during design sessions, and intuitive for users to manipulate. Using them can be a valuable step in designing tabletop applications.
In this paper, we detail the design process of two tabletop applications, concentrating on the role of lo-fi prototyping. TransTime is a pattern game for 5-6 year olds to engage how time progresses. OurSpace is a design tool for 7-9 year olds to arrange desks and assign seats for students in their classroom. By comparing the experiences, we arrive at a better understanding of the benefits, challenges, and limits of using lo-fi prototypes to design interactive-tabletop applications for children
Fracture of bio-cemented sands
Bio-chemical reactions enable the production of biomimetic materials such as
sandstones. In the present study, microbiologically-induced calcium carbonate
precipitation (MICP) is used to manufacture laboratory-scale specimens for
fracture toughness measurement. The mode I and mixed-mode fracture toughnesses
are measured as a function of cementation, and are correlated with strength,
permeability and porosity. A micromechanical model is developed to predict the
dependence of mode I fracture toughness upon the degree of cementation. In
addition, the role of the crack tip -stress in dictating kink angle and
toughness is determined for mixed mode loading. At a sufficiently low degree of
cementation, the zone of microcracking in the vicinity of the crack tip is
sufficiently large for a crack tip -field to cease to exist and for crack
kinking theory to not apply. The interplay between cementation and fracture
properties of sedimentary rocks is explained; this understanding underpins a
wide range of rock fracture phenomena including hydraulic fracture
One-dimensional metallic behavior of the stripe phase in LaSrCuO
Using an exact diagonalization method within the dynamical mean-field theory
we study stripe phases in the two-dimensional Hubbard model. We find a
crossover at doping from diagonal stripes to vertical
site-centered stripes with populated domain walls, stable in a broad range of
doping, . The calculated chemical potential shift and the doping dependence of the magnetic incommensurability are in
quantitative agreement with the experimental results for doped
LaSrCuO. The electronic structure shows one-dimensional
metallic behavior along the domain walls, and explains the suppression of
spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure
New Algorithm for Mixmaster Dynamics
We present a new numerical algorithm for evolving the Mixmaster spacetimes.
By using symplectic integration techniques to take advantage of the exact Taub
solution for the scattering between asymptotic Kasner regimes, we evolve these
spacetimes with higher accuracy using much larger time steps than previously
possible. The longer Mixmaster evolution thus allowed enables detailed
comparison with the Belinskii, Khalatnikov, Lifshitz (BKL) approximate
Mixmaster dynamics. In particular, we show that errors between the BKL
prediction and the measured parameters early in the simulation can be
eliminated by relaxing the BKL assumptions to yield an improved map. The
improved map has different predictions for vacuum Bianchi Type IX and magnetic
Bianchi Type VI Mixmaster models which are clearly matched in the
simulation.Comment: 12 pages, Revtex, 4 eps figure
Spectra of Doubly Heavy Quark Baryons
Baryons containing two heavy quarks are treated in the Born-Oppenheimer
approximation. Schr\"odinger equation for two center Coulomb plus harmonic
oscillator potential is solved by the method of ethalon equation at large
intercenter separations. Asymptotical expansions for energy term and wave
function are obtained in the analytical form. Using those formulas, the energy
spectra of doubly heavy baryons with various quark compositions are calculated
analytically.Comment: 19 pages, latex2e, published at PRC61(2000)04520
- …