28 research outputs found
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
Surges often appear as a result of the emergence of magnetized plasma from
the solar interior. Traditionally, they are observed in chromospheric lines
such as H 6563 \AA and Ca II 8542 \AA. However, whether there is a
response to the surge appearance and evolution in the Si IV lines or, in fact,
in many other transition region lines has not been studied. In this paper we
analyze a simultaneous episode of an H surge and a Si IV burst that
occurred on 2016 September 03 in active region AR12585. To that end, we use
coordinated observations from the Interface Region Imaging Spectrograph (IRIS)
and the Swedish 1-m Solar Telescope (SST). For the first time, we report
emission of Si IV within the surge, finding profiles that are brighter and
broader than the average. Furthermore, the brightest Si IV patches within the
domain of the surge are located mainly near its footpoints. To understand the
relation between the surges and the emission in transition region lines like Si
IV, we have carried out 2.5D radiative MHD (RMHD) experiments of magnetic flux
emergence episodes using the Bifrost code and including the non-equilibrium
ionization of silicon. Through spectral synthesis we explain several features
of the observations. We show that the presence of Si IV emission patches within
the surge, their location near the surge footpoints and various observed
spectral features are a natural consequence of the emergence of magnetized
plasma from the interior to the atmosphere and the ensuing reconnection
processes.Comment: 13 pages, 8 figures. The Astrophysical Journal (Accepted
Ambipolar diffusion in the Bifrost code
Ambipolar diffusion is a physical mechanism related to the drift between
charged and neutral particles in a partially ionized plasma that is key in many
different astrophysical systems. However, understanding its effects is
challenging due to basic uncertainties concerning relevant microphysical
aspects and the strong constraints it imposes on the numerical modeling. Our
aim is to introduce a numerical tool that allows us to address complex problems
involving ambipolar diffusion in which, additionally, departures from
ionization equilibrium are important or high resolution is needed. The primary
application of this tool is for solar atmosphere calculations, but the methods
and results presented here may also have a potential impact on other
astrophysical systems. We have developed a new module for the stellar
atmosphere Bifrost code that improves its computational capabilities of the
ambipolar diffusion term in the Generalized Ohm's Law. This module includes,
among other things, collision terms adequate to processes in the coolest
regions in the solar chromosphere. As a key feature of the module, we have
implemented the Super Time-Stepping (STS) technique, that allows an important
acceleration of the calculations. We have also introduced hyperdiffusion terms
to guarantee the stability of the code. We show that to have an accurate value
for the ambipolar diffusion coefficient in the solar atmosphere it is necessary
to include as atomic elements in the equation of state not only hydrogen and
helium but also the main electron donors like sodium, silicon and potassium. In
addition, we establish a range of criteria to set up an automatic selection of
the free parameters of the STS method that guarantees the best performance,
optimizing the stability and speed for the ambipolar diffusion calculations. We
validate the STS implementation by comparison with a self-similar analytical
solution.Comment: Accepted in A&A, 10 pages, 7 figure
Ambipolar diffusion : self-similar solutions and MHD code testing. Cylindrical symmetry
Funding: This research has been supported by the Spanish Ministry of Science, Innovation and Universities through projects AYA2014-55078-P and PGC2018-095832-B-I00. The authors are also grateful to the European Research Council for support through the Synergy Grant number 810218 (ERC-2018-SyG). DNS acknowledges support by the Research Council of Norway through its Centres of Excellence scheme, project number 262622, and through grants of computing time from the Programme for Supercomputing. AWH gratefully acknowledges the financial support of STFC through the Consolidated grant, ST/S000402/1, to the University of St Andrews.Ambipolar diffusion is a process occurring in partially ionised astrophysical systems that imparts a complicated mathematical and physical nature to Ohm's law. The numerical codes that solve the magnetohydrodynamic (MHD) equations have to be able to deal with the singularities that are naturally created in the system by the ambipolar diffusion term. The global aim is to calculate a set of theoretical self-similar solutions to the nonlinear diffusion equation with cylindrical symmetry that can be used as tests for MHD codes which include the ambipolar diffusion term. First, following the general methods developed in the applied mathematics literature, we obtained the theoretical solutions as eigenfunctions of a nonlinear ordinary differential equation. Phase-plane techniques were used to integrate through the singularities at the locations of the nulls, which correspond to infinitely sharp current sheets. In the second half of the paper, we consider the use of these solutions as tests for MHD codes. To that end, we used the Bifrost code, thereby testing the capabilities of these solutions as tests as well as (inversely) the accuracy of Bifrost's recently developed ambipolar diffusion module. The obtained solutions are shown to constitute a demanding, but nonetheless viable, test for MHD codes that incorporate ambipolar diffusion. The Bifrost code is able to reproduce the theoretical solutions with sufficient accuracy up to very advanced diffusive times. Using the code, we also explored the asymptotic properties of our theoretical solutions in time when initially perturbed with either small or finite perturbations. The functions obtained in this paper are relevant as physical solutions and also as tests for general MHD codes. They provide a more stringent and general test than the simple Zeldovich-Kompaneets-Barenblatt-Pattle solution.PostprintPeer reviewe
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
The solar atmosphere is filled with clusters of hot small-scale loops
commonly known as Coronal Bright Points (CBPs). These ubiquitous structures
stand out in the Sun by their strong X-ray and/or extreme-ultraviolet (EUV)
emission for hours to days, which makes them a crucial piece when solving the
solar coronal heating puzzle. In addition, they can be the source of coronal
jets and small-scale filament eruptions. Here we present a novel 3D numerical
model using the Bifrost code that explains the sustained CBP heating for
several hours. We find that stochastic photospheric convective motions alone
significantly stress the CBP magnetic field topology, leading to important
Joule and viscous heating concentrated around the CBP's inner spine at a few
megameters above the solar surface. We also detect continuous upflows with
faint EUV signal resembling observational dark coronal jets and small-scale
eruptions when H fibrils interact with the reconnection site. We
validate our model by comparing simultaneous CBP observations from SDO and SST
with observable diagnostics calculated from the numerical results for EUV
wavelengths as well as for the H line using the Multi3D synthesis
code. Additionally, we provide synthetic observables to be compared with
Hinode, Solar Orbiter, and IRIS. Our results constitute a step forward in the
understanding of the many different facets of the solar coronal heating
problem.Comment: Accepted in ApJL. 9 pages, 5 figures, 2 movie
Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO
The second Hi-C flight (Hi-C 2.1) provided unprecedentedly high spatial and temporal resolution (~250 km, 4.4 s) coronal EUV images of Fe ix/x emission at 172 Å of AR 12712 on 2018 May 29, during 18:56:21–19:01:56 UT. Three morphologically different types (I: dot-like; II: loop-like; III: surge/jet-like) of fine-scale sudden-brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is (not reported before) resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-like events are apparently much hotter and shorter in span (70 s). We complement the 5 minute duration Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying likely flux cancellation at the microflare's polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA, and IRIS peak nearly simultaneously for many of these events, and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition region origin
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Context. Magnetic reconnection is a fundamental mechanism in astrophysics. A common challenge in mimicking this process numerically in particular for the Sun is that the solar electrical resistivity is small compared to the diffusive effects caused by the discrete nature of codes.
Aims. We aim to study different anomalous resistivity models and their respective effects on simulations related to magnetic reconnection in the Sun.
Methods. We used the Bifrost code to perform a 2D numerical reconnection experiment in the corona that is driven by converging opposite polarities at the solar surface. This experiment was run with three different commonly used resistivity models: 1) the hyper-diffusion model originally implemented in Bifrost, 2) a resistivity proportional to the current density, and 3) a resistivity proportional to the square of the electron drift velocity. The study was complemented with a 1D experiment of a Harris current sheet with the same resistivity models.
Results. The 2D experiment shows that the three resistivity models are capable of producing results in satisfactory agreement with each other in terms of the current sheet length, inflow velocity, and Poynting influx. Even though Petschek-like reconnection occurred with the current density-proportional resistivity while the other two cases mainly followed plasmoid-mediated reconnection, the large-scale evolution of thermodynamical quantities such as temperature and density are quite similar between the three cases. For the 1D experiment, some recalibration of the diffusion parameters is needed to obtain comparable results. Specifically the hyper-diffusion and the drift velocity-dependent resistivity model needed only minor adjustments, while the current density-proportional model needed a rescaling of several orders of magnitude.
Conclusions. The Bifrost hyper-diffusion model is as suitable for simulations of magnetic reconnection as other common resistivity models and has the advantage of being applicable to any region in the solar atmosphere without the need for significant recalibration
Solar surges related to UV bursts
Context. Surges are cool and dense ejections typically observed in chromospheric lines and closely related to other solar phenomena such as UV bursts or coronal jets. Even though surges have been observed for decades now, questions regarding their fundamental physical properties such as temperature and density, as well as their impact on upper layers of the solar atmosphere remain open.
Aims. Our aim is to address the current lack of inverted models and diagnostics of surges, as well as to characterize the chromospheric and transition region plasma of these phenomena.
Methods. We have analyzed an episode of recurrent surges related to UV bursts observed with the Interface Region Imaging Spectrograph (IRIS) in April 2016. The mid- and low-chromosphere of the surges were unprecedentedly examined by getting their representative Mg I
Deciphering Solar Coronal Heating:Energizing Small-scale Loops through Surface Convection
The solar atmosphere is filled with clusters of hot small-scale loops commonly known as coronal bright points (CBPs). These ubiquitous structures stand out in the Sun by their strong X-ray and/or extreme-ultraviolet (EUV) emission for hours to days, which makes them a crucial piece when solving the solar coronal heating puzzle. In addition, they can be the source of coronal jets and small-scale filament eruptions. Here we present a novel 3D numerical model using the Bifrost code that explains the sustained CBP heating for several hours. We find that stochastic photospheric convective motions alone significantly stress the CBP magnetic field topology, leading to important Joule and viscous heating concentrated around the CBP’s inner spine at a few megameters above the solar surface. We also detect continuous upflows with faint EUV signals resembling observational dark coronal jets and small-scale eruptions when Hα fibrils interact with the reconnection site. We validate our model by comparing simultaneous CBP observations from the Solar Dynamics Observatory (SDO) and the Swedish 1‐m Solar Telescope (SST) with observable diagnostics calculated from the numerical results for EUV wavelengths as well as for the Hα line using the Multi3D synthesis code. Additionally, we provide synthetic observables to be compared with Hinode, Solar Orbiter, and the Interface Region Imaging Spectrograph (IRIS). Our results constitute a step forward in the understanding of the many different facets of the solar coronal heating problem.</p