1 research outputs found

    Índices biofísicos da Bacia Hidrográfica do rio Sucuru-PB utilizando o Google Earth Engine

    Get PDF
    The Sucuru River Basin covers an area of 1,652.5 km² and requires efficient monitoring of its natural resources. Remote Sensing (RS) has emerged as a crucial tool for this purpose. This study aimed to analyze the dynamics of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in relation to variations in rainfall during the period from 2001 to 2019. To carry out this analysis, the Google Earth Engine (GEE) platform was used, along with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and TerraClimate sensors, using JavaScript programming. Pearson's correlation coefficient (r) in the R® software was applied to assess the relationships between NDVI time series data and rainfall, as well as between LST data and rainfall. This study highlighted the effectiveness of the GEE platform in processing the images, allowing for a comprehensive analysis of the dynamics of the Sucuru River basin and its relationship with key climatic factors, providing crucial information for managing water resources in the region, highlighting the importance of RS as an effective tool for monitoring the natural resources of river basins. Pearson's correlation coefficients revealed a moderate correlation between NDVI and rainfall, as well as between LST and rainfall, indicating a strong association between vegetation dynamics and LST with rainfall patterns.A Bacia Hidrográfica do rio Sucuru-PB abrange uma área de 1.652,5 km², e requer monitoramento eficiente de seus recursos naturais. O Sensoriamento Remoto (SR) emerge como uma ferramenta crucial para essa finalidade. Este estudo teve como objetivo a análise da dinâmica do Índice de Vegetação por Diferença Normalizada (NDVI) e da Temperatura da Superfície Terrestre (LST) em relação às variações na precipitação pluviométrica durante o período de 2001 a 2019. Para realizar essa análise, a plataforma Google Earth Engine (GEE) foi empregada, juntamente com dados dos sensores Moderate Resolution Imaging Spectroradiometer (MODIS) e TerraClimate, utilizando programação em JavaScript. O coeficiente de correlação de Pearson (r) no software R® foi aplicado para avaliar as relações entre os dados da série temporal do NDVI e da precipitação pluviométrica, bem como entre os dados da LST e a precipitação pluviométrica. Este estudo destacou a eficácia da plataforma GEE no processamento das imagens, permitindo uma análise abrangente da dinâmica da bacia do rio Sucuru e sua relação com fatores climáticos fundamentais, fornecendo informações cruciais para a gestão dos recursos hídricos na região, destacando a importância do SR como uma ferramenta eficaz para monitorar os recursos naturais das bacias hidrográficas. Os coeficientes de correlação de Pearson revelaram uma correlação moderada entre o NDVI e a precipitação pluviométrica, bem como entre a LST e a precipitação pluviométrica, indicando uma forte associação entre a dinâmica da vegetação e a LST com os padrões de precipitação pluviométrica
    corecore