25 research outputs found
Hyperspectral monitoring of fructose content in marzipan
In our research marzipan samples of different sugar to almond paste ratios (1:1, 2:1, 3:1) were stored at 17 °C. Reducing sugar content was measured by analytical method, texture analysis was done by penetrometry, electric characteristics were measured by conductometry and hyperspectral images were taken 6–8 times during the 16 days of storage. For statistical analyses (discriminant analysis, principal component analysis) SPSS program was used.
According to our findings with the hyperspectral analysis technique, it is possible to identify how long the samples were stored (after production), and to which class (ratio of sugar to almond) the sample belonged. The main wavelengths which gave the best discrimination results among the days of storage were between 960 and 1100 nm. The type of the marzipan was easy to distinguish with the hyperspectral data; the biggest differences were observed at 1200 and 1400 nm, which are connected to the first overtone of C-H bound, therefore correlate with the oil content. The spatial distribution of penetrometric, electric and spectral properties were also characteristic to fructose content.
The fructose content of marzipan is difficult to measure by usual optical ways (polarimetry, spectroscopy), but since fructose is hygroscopic, the spatial distribution of spectral properties can be characteristic
Complexity of the Immune Response Elicited by Different COVID-19 Vaccines, in the Light of Natural Autoantibodies and Immunomodulatory Therapies
Despite the abundance of data on the COVID-19 vaccine-induced immune activation, the impact of natural autoantibodies (nAAbs) on these processes is less well defined. Therefore, we investigated potential connections between vaccine efficacy and nAAb levels. We were also interested in the impact of immunomodulatory therapies on vaccine efficacy. Clinical residual samples were used for the assessment of the COVID-19 vaccine-elicited immune response (IR) (n=255), as well as for the investigation of the immunization-associated expansion of the nAAb pool (n=185). In order to study the potential interaction between immunomodulatory therapies and the vaccine-induced IR, untreated, healthy individuals and patients receiving anti-TNFα or anti-IL-17 therapies were compared (n total =45). In-house ELISAs (anticitrate synthase, anti-HSP60 and-70) and commercial ELISAs (anti-SARS-CoV-2 ELISAs IgG, IgA, NeutraLISA and IFN-γ release assay 'IGRA') were applied. We found significant differences in the IR given to different vaccines. Moreover, nAAb levels showed plasticity in response to anti-COVID-19 immunization. We conclude that our findings may support the theorem about the non-specific beneficial 'side effects' of vaccination, including the broadening of the nAAb repertoire. Considering immunomodulation, we suggest that anti-TNFα and anti-IL17 treatments may interfere negatively with MALT-associated IR, manifested as decreased IgA titers; however, the modest sample numbers of the herein presented model might be a limiting factor of reaching a more comprehensive conclusion
Myeloid-Specific Deletion of Mcl-1 Yields Severely Neutropenic Mice That Survive and Breed in Homozygous Form
Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2Cre/CreMcl1flox/flox (Mcl1ΔMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1ΔMyelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1ΔMyelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1ΔMyelo mice from arthritis development in the K/B×N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1ΔMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8-CreMcl1flox/flox (Mcl1ΔPMN) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1ΔMyelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease
Hemizygous nonsense variant in the moesin gene (MSN) leads to a new autoimmune phenotype of Immunodeficiency 50
Here we describe the investigation of two male siblings with juvenile total loss of teeth, early onset chronic leg ulcers and autoimmune thyroiditis in both patients, as well as focal segmental glomerulosclerosis with associated pulmonal emphysema in one and diabetes mellitus in the other patient. The clinical picture and lupus anticoagulant, cryoglobulin and cold agglutinin positivity suggested the diagnosis of antiphospholipid syndrome. Flow cytometry analysis showed immunophenotypes consistent with immune dysregulation: low number of naive T cells, elevated CD4+ T cell counts and decreased CD8+ T cell counts were detected, and more than half of the T helper population was activated. Because of the siblings’ almost identical clinical phenotype genetic alteration was suspected in the background of the immunodeficiency. Whole exome sequencing identified a previously not described hemizygous nonsense variant (c.650G>A, p.W217X) within exon 6 of the moesin gene (MSN) localized on chromosome X, resulting in significantly decreased MSN mRNA expression compared to healthy controls. We present a putative new autoimmune phenotype of Immunodeficiency 50 (MIM300988) characterized by antiphospholipid syndrome, Hashimoto’s thyroiditis, leg ulcer and juvenile loss of teeth, associated with W217X mutation of the MSN gene
Microscale analysis of metal uptake by argillaceous rocks using positive matrix factorization of microscopic X-ray fluorescence elemental maps
Argillaceous rocks are considered in most European countries as suitable host rock formations for the deep geological disposal of high-level radioactive waste (HLW). The most important chemical characteristic in this respect is their generally strong radionuclide retention property due to the high sorption capacity. Consequently, the physico-chemical parameters of these processes have to be studied in great detail. Synchrotron radiation microscopic X-ray fluorescence (SR µ-XRF) has sufficient sensitivity to study these processes on the microscale without the necessity of the application of radioactive substances. The present study focuses on the interaction between the escaped ions and the host-rock surrounding the planned HLW repository. SR µ-XRF measurements were performed on thin sections subjected to sorption experiments using 5 µm spatial resolution. Inactive Cs(I), Ni(II), Nd(III) and natural U(VI) were selected for the experiments chemically representing key radionuclides. The thin sections were prepared on high-purity silicon wafers from geochemically characterized cores of Boda Claystone Formation, Hungary. Samples were subjected to 72-hour sorption experiments with one ion of interest added. The µ-XRF elemental maps taken usually on several thousand pixels indicate a correlation of Cs and Ni with Fe- and K-rich regions suggesting that these elements are predominantly taken up by clay-rich phases. U and Nd was found to be bound not only to the clayey matrix, but the cavity filling minerals also played important role in the uptake. Multivariate methods were found to be efficient tools for extracting information from the elemental distribution maps even when the clayey matrix and fracture infilling regions were examined in the same measured area. By using positive matrix factorization as a new approach the factors with higher sorption capacity could be identified and with additional mineralogical information the uptake capacity of the different mineral phases could be quantified. The results were compared with cluster analysis when the regions dominated by different mineral phases are segmented. The multivariate approach based on µ-XRF to identify the minerals was validated using microscopic X-ray diffraction
Neutrophil cell surface receptors and their intracellular signal transduction pathways
AbstractNeutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2+ signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases
Felmérés a nyírségi mezőgazdasági termelők növényvédelmi ismereteiről valamint növényvédő szer felhasználásuk gyakorlatáról
Napjainkban egyre növekszik az elvárás a fogyasztók részéről a mezőgazdaságban előállított termékek iránt. A megfelelő minőségű termék előállításához komoly növényvédelmi ismeretekre van szükség. Az eredményes növényvédelem elengedhetetlen feltétele, hogy megfelelően képzett szakember végezze a megfelelő növényvédő szerekkel. Ezért vizsgálja a felmérés a gazdálkodók növényvédő szerekkel kapcsolatos ismereteit, és hogy milyen módon használják fel azokat. A felmérés alapja feleletválasztós kérdőív volt, melyet 93 gazdálkodó töltött ki. A kérdőív 68 kérdésből állt. A kapott eredmények alapján történő értékelés bemutatja a nyírségi mezőgazdasági termelők növényvédelmi ismereteinek szintjét valamint e termelők növényvédő szer felhasználásának gyakorlati vonatkozásait.szakirányú továbbképzésNövényvédelmi szakmérnö