3 research outputs found

    Differential antibody response to the Anopheles gambiae gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors.

    Get PDF
    Background Mosquito saliva plays crucial roles in blood feeding but also evokes in hosts an anti-saliva antibody response. The IgG response to the Anopheles gambiae salivary protein gSG6 was previously shown to be a reliable indicator of human exposure to Afrotropical malaria vectors. We analyzed here the humoral response to the salivary anti-thrombin cE5 in a group of individuals from a malaria hyperendemic area of Burkina Faso. Methods ELISA was used to measure the anti-cE5 IgG, IgG1 and IgG4 antibody levels in plasma samples collected in the village of Barkoumbilen (Burkina Faso) among individuals of the Rimaibé ethnic group. Anti-gSG6 IgG levels were also determined for comparison. Anopheles vector density in the study area was evaluated by indoor pyrethrum spray catches. Results The cE5 protein was highly immunogenic and triggered in exposed individuals a relatively long-lasting antibody response, as shown by its unchanged persistence after a few months of absent or very low exposure (dry season). In addition cE5 did not induce immune tolerance, as previously suggested for the gSG6 antigen. Finally, IgG subclass analysis suggested that exposed individuals may mount a Th1-type immune response against the cE5 protein. Conclusions The anti-cE5 IgG response is shown here to be a sensitive indicator of human exposure to anopheline vectors and to represent an additional tool for malaria epidemiological studies. It may be especially useful in conditions of low vector density, to monitor transiently exposed individuals (i.e. travellers/workers/soldiers spending a few months in tropical Africa) and to evaluate the impact of insecticide treated nets on vector control. Moreover, the gSG6 and cE5 salivary proteins were shown to trigger in exposed individuals a strikingly different immune response with (i) gSG6 evoking a short-lived IgG response, characterized by high IgG4 levels and most likely induction of immune tolerance, and (ii) cE5 eliciting a longer-living IgG response, dominated by anti-cE5 IgG1 antibodies and not inducing tolerance mechanisms. We believe that these two antigens may represent useful reagents to further investigate the so far overlooked role of Anopheles saliva and salivary proteins in host early immune response to Plasmodium parasites

    Differential antibody response to the Anopheles gambiae gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors.

    No full text
    Background Mosquito saliva plays crucial roles in blood feeding but also evokes in hosts an anti-saliva antibody response. The IgG response to the Anopheles gambiae salivary protein gSG6 was previously shown to be a reliable indicator of human exposure to Afrotropical malaria vectors. We analyzed here the humoral response to the salivary anti-thrombin cE5 in a group of individuals from a malaria hyperendemic area of Burkina Faso. Methods ELISA was used to measure the anti-cE5 IgG, IgG1 and IgG4 antibody levels in plasma samples collected in the village of Barkoumbilen (Burkina Faso) among individuals of the Rimaibé ethnic group. Anti-gSG6 IgG levels were also determined for comparison. Anopheles vector density in the study area was evaluated by indoor pyrethrum spray catches. Results The cE5 protein was highly immunogenic and triggered in exposed individuals a relatively long-lasting antibody response, as shown by its unchanged persistence after a few months of absent or very low exposure (dry season). In addition cE5 did not induce immune tolerance, as previously suggested for the gSG6 antigen. Finally, IgG subclass analysis suggested that exposed individuals may mount a Th1-type immune response against the cE5 protein. Conclusions The anti-cE5 IgG response is shown here to be a sensitive indicator of human exposure to anopheline vectors and to represent an additional tool for malaria epidemiological studies. It may be especially useful in conditions of low vector density, to monitor transiently exposed individuals (i.e. travellers/workers/soldiers spending a few months in tropical Africa) and to evaluate the impact of insecticide treated nets on vector control. Moreover, the gSG6 and cE5 salivary proteins were shown to trigger in exposed individuals a strikingly different immune response with (i) gSG6 evoking a short-lived IgG response, characterized by high IgG4 levels and most likely induction of immune tolerance, and (ii) cE5 eliciting a longer-living IgG response, dominated by anti-cE5 IgG1 antibodies and not inducing tolerance mechanisms. We believe that these two antigens may represent useful reagents to further investigate the so far overlooked role of Anopheles saliva and salivary proteins in host early immune response to Plasmodium parasites

    IgG1 and IgG4 antibody responses to the Anopheles gambiae salivary protein gSG6 in the sympatric ethnic groups Mossi and Fulani in a malaria hyperhendemic area of Burkina Faso.

    No full text
    Human antibody response to the Anopheles gambiae salivary protein gSG6 has recently emerged as a potentially useful tool for malaria epidemiological studies and for the evaluation of vector control interventions. However, the current understanding of the host immune response to mosquito salivary proteins and of the possible crosstalk with early response to Plasmodium parasites is still very limited. We report here the analysis of IgG1 and IgG4 subclasses among anti-gSG6 IgG responders belonging to Mossi and Fulani from Burkina Faso, two ethnic groups which are known for their differential humoral response to parasite antigens and for their different susceptibility to malaria. The IgG1 antibody response against the gSG6 protein was comparable in the two groups. On the contrary, IgG4 titers were significantly higher in the Fulani where, in addition, anti-gSG6 IgG4 antibodies appeared in younger children and the ratio IgG4/IgG1 stayed relatively stable throughout adulthood. Both gSG6-specific IgG1 and IgG4 antibodies showed a tendency to decrease with age whereas, as expected, the IgG response to the Plasmodium circumsporozoite protein (CSP) exhibited an opposite trend in the same individuals. These observations are in line with the idea that the An. gambiae gSG6 salivary protein induces immune tolerance, especially after intense and prolonged exposure as is the case for the area under study, suggesting that gSG6 may trigger in exposed individuals a Th2-oriented immune response
    corecore