266 research outputs found

    Interspecific association of brown trout (Salmo trutta) with non-native brook trout (Salvelinus fontinalis) at the fry stage

    Get PDF
    The introduction of non-native brook trout (Salvelinus fontinalis) in Europe has led to displacement and decreasing populations of native brown trout (Salmo trutta). Some studies have found that brown trout shift to a diet niche similar to brook trout when the two species live in sympatry, which conflicts with the competitive exclusion principle. A change in feeding niche may be a sign of early interspecific association and social learning, leading to behavioral changes. As a first step to address this possibility, it is essential to assess the interspecific association between the species during the early ontogenetic life stages. In this study, we therefore assess whether juvenile brown trout associate with non-native juvenile brook trout to the same extent as with conspecifics by setting up two experiments: (i) a binomial choice test allowing visual and chemical cues to estimate the species specificity of group preference, and (ii) an association test without physical barriers to estimate the degree of association of a focal brown trout with a group of either conspecifics or heterospecifics. In experiment (1), we found that focal juvenile brown trout preferred to associate with the stimuli groups and did not discriminate either against conspecific or heterospecific groups. Furthermore, more active individuals showed stronger preference for the stimuli group than less active ones, regardless of species. In experiment (2), we found that brook trout groups had a tighter group structure than brown trout groups, and that focal brown trout showed stronger association with brook trout than with brown trout. These results indicate that brown trout may associate with brook trout at an early life stage, which would allow for interspecific social learning to occur. Future studies should look closer into causes and consequences of interspecific association and social learning, including potential effects on the phenotype selection in brown trout populations

    Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP) or as DNA (DREP). It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP.</p> <p>Results</p> <p>We show that the induction of a CD8<sup>+ </sup>T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN), induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization.</p> <p>Conclusions</p> <p>We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.</p

    Formation of the Scandinavian Obesity Surgery Registry, SOReg.

    Get PDF
    Obesity surgery is expanding, the quality of care is ever more important, and learning curve assessment should be established. A large registry cohort can show long-term effects on obesity and its comorbidities, complications, and long-term side effects of surgery, as well as changes in health-related quality of life (QoL). Sweden is ideally suited to the task of data collection and audit, with universal use of personal identification numbers, nation-wide registries permitting cross-matching to analyze causes of death, in-hospital care, and health-related absenteeism

    Mother–infant interaction in schizophrenia:Transmitting risk or resilience? A systematic review of the literature

    Get PDF
    Purpose: The parent–infant relationship is an important context for identifying very early risk and resilience factors and targets for the development of preventative interventions. The aim of this study was to systematically review studies investigating the early caregiver–infant relationship and attachment in offspring of parents with schizophrenia. Methods: We searched computerized databases for relevant articles investigating the relationship between early caregiver–infant relationship and outcomes for offspring of a caregiver with a diagnosis of schizophrenia. Studies were assessed for risk of bias. Results: We identified 27 studies derived from 10 cohorts, comprising 208 women diagnosed with schizophrenia, 71 with other psychoses, 203 women with depression, 59 women with mania/bipolar disorder, 40 with personality disorder, 8 with unspecified mental disorders and 119 non-psychiatric controls. There was some evidence to support disturbances in maternal behaviour amongst those with a diagnosis of schizophrenia and there was more limited evidence of disturbances in infant behaviour and mutuality of interaction. Conclusions: Further research should investigate both sources of resilience and risk in the development of offspring of parents with a diagnosis of schizophrenia and psychosis. Given the lack of specificity observed in this review, these studies should also include maternal affective disorders including depressive and bipolar disorders

    Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis

    Get PDF
    BACKGROUND: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. CONCLUSIONS: Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes

    Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS\textbf{METHODS AND FINDINGS}: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. CONCLUSIONS\textbf{CONCLUSIONS}: Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.MRC Epidemiology Unit, Fenland study, EPIC-InterAct study, EPIC-Norfolk case-cohort study funding: this study was funded by the United Kingdom’s Medical Research Council through grants MC_UU_12015/1, MC_UU_12015/5, MC_PC_13046, MC_PC_13048 and MR/L00002/1. We acknowledge support from the National Institute for Health Research Biomedical Research Centre. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement number 115372, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. EPIC-InterAct Study funding: funding for the InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197). MRC Human Nutrition Research funding: This research was supported by the Medical Research Council (MC_UP_A090_1006) and Cambridge Lipidomics Biomarker Research Initiative (G0800783). The SABRE study was funded at baseline by the UK Medical Research Council, Diabetes UK and the British Heart Foundation and at follow-up by a programme grant from the Wellcome Trust (WT082464) and British Heart Foundation (SP/07/001/23603); Diabetes UK funded the metabolomics analyses (13/0004774). RJOS, EN, JRZ and AK received funding from the Swedish Research Council, Stockholm County Council, Novo Nordisk Foundation and Diabetes Wellness. DBS is supported by the Wellcome Trust grant number 107064. MIM is a Wellcome Trust Senior Investigator and is supported by the following grants from the Wellcome Trust: 090532 and 098381. IB is supported by the Wellcome Trust grant WT098051
    • 

    corecore