4 research outputs found

    A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    No full text
    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A–PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main regulators of G2 checkpoint maintenance following DNA-damage

    Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    No full text
    Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage
    corecore