446 research outputs found

    Floquet engineering of correlated tunneling in the Bose-Hubbard model with ultracold atoms

    Get PDF
    We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.Comment: 8 pages, 9 figure

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    Model for the hyperfine structure of electronically-excited KCs{\rm KCs} molecules

    Full text link
    A model for determining the hyperfine structure of the excited electronic states of diatomic bialkali heteronuclear molecules is formulated from the atomic hyperfine interactions, and is applied to the case of bosonic 39^{39}KCs and fermionic 40^{40}KCs molecules. The hyperfine structure of the potential energy curves of the states correlated to the K(4s\,^2S_{1/2})+Cs(6p\,^2P_{1/2,3/2}) dissociation limits is described in terms of different coupling schemes depending on the internuclear distance RR. These results provide the first step in the calculation of the hyperfine structure of rovibrational levels of these excited molecular states in the perspective of the identification of efficient paths for creating ultracold ground-state KCs molecules.Comment: 12 pages, 15 figure

    Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture

    Full text link
    We report on the observation of interspecies Feshbach resonances in an ultracold, optically trapped mixture of Rb and Cs atoms. In a magnetic field range up to 300 G we find 23 interspecies Feshbach resonances in the lowest spin channel and 2 resonances in a higher channel of the mixture. The extraordinarily rich Feshbach spectrum suggests the importance of different partial waves in both the open and closed channels of the scattering problem along with higher-order coupling mechanisms. Our results provide, on one hand, fundamental experimental input to characterize the Rb-Cs scattering properties and, on the other hand, identify possible starting points for the association of ultracold heteronuclear RbCs molecules.Comment: 7 pages, 3 figures, 1 tabl
    • …
    corecore