31 research outputs found

    Experimental Study on Behaviour of Clutch Plate Lining using Jute Fibre

    Get PDF
    Clutch plates are usually made of cast iron and high carbon steels. The cast iron has high compressive strength, low tensile strength and low ductility. Clutch lining material is made up of asbestos. In order to obtain good life and more effectiveness and to reduce the cost of clutch plate, the new fibre reinforcement with clutch material is introduced. For the reinforcement with clutch liner material, jute fibre is selected. Due to the reinforcement of the clutch material, the properties has been improved. Then, the comparison of the properties and effectiveness of the new plate with the existing plate is to be done

    Immune response to Mycobacterium tuberculosis specific antigen ESAT-6 among south Indians

    Get PDF
    The 6-kDa early secreted antigenic target (ESAT-6) is a T-cell antigen recognized by individuals infected with Mycobacterium tuberculosis. The aim of the study was to identify ‘‘protective epitopes’’ of ESAT-6 protein in the south Indian population. Proliferative and Interferon gamma (IFN-g) responses to ESAT-6 peptides were studied by flow cytometry and Enzyme linked immunosorbent assay (ELISA). Healthy household contacts (HHC) recognized Esp1 (10/17) and Esp6 (9/17) peptides. Among pulmonary tuberculosis patients (PTB), Esp1 (3/11) and Esp6 (5/11) were recognized. Maximal response (7/10) was found for Esp1 and Esp8 in treated patients (TR). Median values for the responding subjects gave the following results: Esp1 (76 pg/ml), Esp6 (64 pg/ml), induced IFN-g production in HHC; PTB gave low IFN-g responses for the peptides. TR responded to the peptides Esp1 (141 pg/ml), Esp8 (102 pg/ml). The proliferation of CD4 cells was similar in both PTB and TR for all peptides; but HHC showed an increase for Esp1 (p < 0.05) and Esp6 (p < 0.01). Esp1 (amino acids aa 1–20) and Esp6 (aa 51–70) were the immunogenic peptides recognized by the alleles HLA DRB1*04 and HLA DRB1*10 among HHC. But the association of the alleles with ESAT-6 peptide presentation needs to be confirmed in a large cohort of subjects. We speculate that ESAT-6 can be used along with other immune-eliciting proteins for vaccine design strategies in south Indian population

    Human protein reference database—2006 update

    Get PDF
    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Investigation on Durability Behavior of Fiber Reinforced Concrete with Steel Slag/Bacteria beneath Diverse Exposure Conditions

    Full text link
    One of society's most perplexing concerns is trash management. Among them is steel slag, which is obtained from steel mills and is used in the building industry as a partial substitution ingredient in concrete. To ensure that the concrete lasts the desired service life without deteriorating, bacteria (Bacillus subtilis) are introduced to ensure that the construction performs as planned. The research is focused on the M30 grade concrete mix specified in the Indian Standard Code. Concrete specimens containing fiber, steel slag, and bacteria are subjected to a variety of environmental conditions, including extreme, extremely severe, severe, moderate, and mild. The ultrasonic pulse velocity, sorptivity, water absorption, rapid chloride penetration, and acid resistance characteristics of the fiber-reinforced bacterial concrete are compared to those of regular concrete specimens

    Newcastle Disease Virus Vectored Chicken Infectious Anaemia Vaccine Induces Robust Immune Response in Chickens

    Full text link
    Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens

    Molecular Level Insights on Collagen–Polyphenols Interaction Using Spin–Relaxation and Saturation Transfer Difference NMR

    Full text link
    Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected polyphenols, viz., gallic acid (GA), pyrogallol (PG), catechin (CA), and epigallocatechin gallate (EGCG), has been investigated by various solution NMR measurements, viz., <sup>1</sup>H and <sup>13</sup>C chemical shifts (δ<sub>H</sub> and δ<sub>C</sub>), <sup>1</sup>H nonselective spin–lattice relaxation times (<i>T</i><sub>1NS</sub>) and selective spin–lattice relaxation times (<i>T</i><sub>1SEL</sub>), as well as spin–spin relaxation times (<i>T</i><sub>2</sub>). Furthermore, we have employed saturation transfer difference (STD) NMR method to monitor the site of GA, CA, PG, and EGCG which are in close proximity to collagen. It is found that −COOH group of GA provides an important contribution for the interaction of GA with collagen, as evidenced from <sup>13</sup>C analysis, while PG, which is devoid of −COOH group in comparison to GA, does not show any significant interaction with collagen. STD NMR data indicates that the resonances of A-ring (H2′, H5′ and H6′) and C-ring (H6 and H8) protons of CA, and A-ring (H2′ and H6′), C-ring (H6 and H8), and D-ring (H2″and H6″) protons of EGCG persist in the spectra, demonstrating that these protons are in spatial proximity to collagen, which is further validated by independent proton spin-relaxation measurement and analysis. The selective <sup>1</sup>H <i>T</i><sub>1</sub> measurements of polyphenols in the presence of protein at various concentrations have enabled us to determine their binding affinities with collagen. EGCG exhibits high binding affinity with collagen followed by CA, GA, and PG. Further, NMR results propose that presence of gallic acid moiety in a small molecule increases its affinity with collagen. Our experimental findings provide molecular insights on the binding of collagen and plant polyphenols
    corecore