53 research outputs found

    PEN: a low energy test of lepton universality

    Full text link
    Allowed charged π\pi meson decays are characterized by simple dynamics, few available decay channels, mainly into leptons, and extremely well controlled radiative and loop corrections. In that sense, pion decays represent a veritable triumph of the standard model (SM) of elementary particles and interactions. This relative theoretical simplicity makes charged pion decays a sensitive means for testing the underlying symmetries and the universality of weak fermion couplings, as well as for studying pion structure and chiral dynamics. Even after considerable recent improvements, experimental precision is lagging far behind that of the theoretical description for pion decays. We review the current state of experimental study of the pion electronic decay π+e+νe(γ)\pi^+ \to e^+\nu_e(\gamma), or πe2(γ)\pi_{e2(\gamma)}, where the (γ)(\gamma) indicates inclusion and explicit treatment of radiative decay events. We briefly review the limits on non-SM processes arising from the present level of experimental precision in πe2(γ)\pi_{e2(\gamma)} decays. Focusing on the PEN experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the prospects for further improvement in the near term.Comment: 11 pages, 5 figures; paper presented at the XIII International Conference on Heavy Quarks and Leptons, 22-27 May 2016, Blacksburg, Virginia, US

    PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction

    Full text link
    A new measurement of Bπe2B_{\pi e2}, the π+e+ν(γ)\pi^+ \to e^+\nu(\gamma) decay branching ratio, is currently under way at the Paul Scherrer Institute. The present experimental result on Bπe2B_{\pi e2} constitutes the most accurate test of lepton universality available. The accuracy, however, still lags behind the theoretical precision by over an order of magnitude. Because of the large helicity suppression of the πe2\pi_{e2} decay, its branching ratio is susceptible to significant contributions from new physics, making this decay a particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the American Institute of Physic

    Precise Measurement of the Pi+ -> Pi0 e+ nu Branching Ratio

    Full text link
    Using a large acceptance calorimeter and a stopped pion beam we have made a precise measurement of the rare Pi+ -> Pi0 e+ Nu,(pi_beta) decay branching ratio. We have evaluated the branching ratio by normalizing the number of observed pi_beta decays to the number of observed Pi+ -> e+ Nu, (pi_{e2}) decays. We find the value of Gamma(Pi+ -> Pi0 e+ Nu)/Gamma(total) = [1.036 +/- 0.004(stat.) +/- 0.004(syst.) +/- 0.003(pi_{e2})] x 10^{-8}$, where the first uncertainty is statistical, the second systematic, and the third is the pi_{e2} branching ratio uncertainty. Our result agrees well with the Standard Model prediction.Comment: 4 pages, 5 figures, 1 table, revtex4; changed content; updated analysi

    Precise Measurement of pi+ -> e+ nu Branching Ratio

    Full text link
    The PEN Collaboration is conducting a new measurement of the pi+ -> e+ nu branching ratio at the Paul Scherrer Institute, with the goal uncertainty of delta B/B(pie2)=5E-4 or lower. At present, the combined accuracy of all published pie2 decay measurements lags behind the theoretical calculation by a factor of 40. In this contribution we report on the PEN detector configuration and its performance during two development runs done in 2007 and 2008.Comment: pdflatex, 11 pages, 5 figures, to be published in "Progress in High-Energy Physics and Nuclear Safety", NATO Science for Peace Series: B - Physics and Biophysic

    New Precise Measurement of the Pion Weak Form Factors in the Pi+ -> e+ nu gamma Decay

    Full text link
    We have measured the π+e+νγ\pi^+\to {\rm e}^+\nu\gamma branching ratio over a wide region of phase space, based on a total of 65,460 events acquired using the PIBETA detector. Minimum-χ2\chi^2 fits to the measured (Ee+,Eγ)(E_{e^+},E_\gamma) energy distributions result in the weak form factor value of FA=0.0119(1)F_A=0.0119(1) with a fixed value of FV=0.0259F_V=0.0259. An unconstrained fit yields FV=0.0258(17)F_V=0.0258(17) and FA=0.0117(17)F_A=0.0117(17). In addition, we have measured a=0.10(6)a=0.10(6) for the dependence of FVF_V on q2q^2, the e+ν{\rm e}^{+}\nu pair invariant mass squared, parametrized as FV(q2)=FV(0)(1+aq2)F_V(q^2)=F_V(0)(1+a\cdot q^2). The branching ratio for the kinematic region Eγ>10E_\gamma > 10 MeV and θe+γ>40\theta_{{\rm e^+}\gamma} > 40^\circ is measured to be Bexp=73.86(54)×108B^{\rm exp}=73.86(54) \times 10^{-8}. Earlier deviations we reported in the high-EγE_\gamma/low-Ee+E_{{\rm e}^+} kinematic region are resolved, and we find full compatibility with CVC and standard VV-AA calculations without a tensor term. We also derive new values for the pion polarizability, αE=2.78(10)×104fm3\alpha_E = \rm 2.78(10) \times 10^{-4} fm^3, and neutral pion lifetime, τπ0=(8.5±1.1)×1017\tau_{\pi 0} = (8.5 \pm 1.1) \times 10^{-17} s.Comment: 4 pages, 2 PDF figure
    corecore