1,844 research outputs found

    Hom-Lie color algebra structures

    Full text link
    This paper introduces the notion of Hom-Lie color algebra, which is a natural general- ization of Hom-Lie (super)algebras. Hom-Lie color algebras include also as special cases Lie (super) algebras and Lie color algebras. We study the homomorphism relation of Hom-Lie color algebras, and construct new algebras of such kind by a \sigma-twist. Hom-Lie color admissible algebras are also defined and investigated. They are finally classified via G-Hom-associative color algebras, where G is a subgroup of the symmetric group S_3.Comment: 16 page

    Cosmological Constant and Noncommutativity: A Newtonian point of view

    Full text link
    We study a Newtonian cosmological model in the context of a noncommutative space. It is shown that the trajectories of a test particle undergo modifications such that it no longer satisfies the cosmological principle. For the case of a positive cosmological constant, spiral trajectories are obtained and corrections to the Hubble constant appear. It is also shown that, in the limit of a strong noncommutative parameter, the model is closely related to a particle in a G\"odel-type metric.Comment: 14 pages, 3 figures, Introduction was changed and references added. Final version accepted for publication in JMPL

    Bits and Pieces in Logarithmic Conformal Field Theory

    Full text link
    These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. These two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.Comment: 91 pages, notes of lectures delivered at the first School and Workshop on Logarithmic Conformal Field Theory and its Applications, Tehran, September 2001. Amendments in Introductio

    U(1) Gauge Field of the Kaluza-Klein Theory in the Presence of Branes

    Get PDF
    We investigate the zero mode dimensional reduction of the Kaluza-Klein unifications in the presence of a single brane in the infinite extra dimension. We treat the brane as fixed, not a dynamical object, and do not require the orbifold symmetry. It seems that, contrary to the standard Kaluza-Klein models, the 4D effective action is no longer invariant under the U(1) gauge transformations due to the explicit breaking of isometries in the extra dimension by the brane. Surprisingly, however, the linearized perturbation analysis around the RS vacuum shows that the Kaluza-Klein gauge field does possess the U(1) gauge symmetry at the linear level. In addition, the graviscalar also behaves differently from the 4D point of view. Some physical implications of our results are also discussed.Comment: 10 pages, revtex, no figure, version to appear in Phys. Rev. D, possible caveats of our results due to the zero mode ansatz we used are explained in more detai

    Dynamical Behavior of the BTZ Black Hole

    Get PDF
    We study the dynamical behavior of the BTZ (Banados-Teitelboim-Zanelli) black hole with the low-energy string effective action. The perturbation analysis around the BTZ black hole reveals a mixing between the dilaton and other fields. Introducing the new gauge (dilaton gauge), we disentangle this mixing completely and obtain one decoupled dilaton equation. We obtain the decay rate Γ\Gamma of BTZ black hole.Comment: minor typhographical corrections, ReVTeX, 9 pages with no figure

    Thermodynamics of phase transition in higher dimensional AdS black holes

    Full text link
    We investigate the thermodynamics of phase transition for (n+1) (n+1) dimensional Reissner Nordstrom (RN)-AdS black holes using a grand canonical ensemble. This phase transition is characterized by a discontinuity in specific heat. The phase transition occurs from a lower mass black hole with negative specific heat to a higher mass black hole with positive specific heat. By exploring Ehrenfest's scheme we show that this is a second order phase transition. Explicit expressions for the critical temperature and critical mass are derived. In appropriate limits the results for (n+1) (n+1) dimensional Schwarzschild AdS black holes are obtained.Comment: LaTex, 11 pages, 5 figures, To appear in JHE

    Dissipative cosmological solutions

    Full text link
    The exact general solution to the Einstein equations in a homogeneous Universe with a full causal viscous fluid source for the bulk viscosity index m=1/2m=1/2 is found. We have investigated the asymptotic stability of Friedmann and de Sitter solutions, the former is stable for m≄1/2m\ge 1/2 and the latter for m≀1/2m\le 1/2. The comparison with results of the truncated theory is made. For m=1/2m=1/2, it was found that families of solutions with extrema no longer remain in the full case, and they are replaced by asymptotically Minkowski evolutions. These solutions are monotonic.Comment: 17 pages, LaTeX 2.09, 1 figure. To be published in Classical and Quantum Gravit

    The Globular Cluster System of M60 (NGC 4649). II. Kinematics of the Globular Cluster System

    Full text link
    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) M60 in the Virgo cluster. Using the photometric and spectroscopic database of 121 GCs (83 blue GCs and 38 red GCs), we have investigated the kinematics of the GC system. We have found that the M60 GC system shows a significant overall rotation. The rotation amplitude of the blue GCs is slightly smaller than or similar to that of the red GCs, and their angles of rotation axes are similar. The velocity dispersions about the mean velocity and about the best fit rotation curve for the red GCs are marginally larger than those for the blue GCs. Comparison of observed stellar and GC velocity dispersion profiles with those calculated from the stellar mass profile shows that the mass-to-light ratio should be increased as the galactocentric distance increases, indicating the existence of an extended dark matter halo. The entire sample of GCs in M60 is found to have a tangentially biased velocity ellipsoid unlike the GC systems in other gEs. Two subsamples appear to have different velocity ellipsoids. The blue GC system has a modest tangentially biased velocity ellipsoid, while the red GC system has a modest radially biased or an isotropic velocity ellipsoid. From the comparison of the kinematic properties of the M60 GC system to those of other gEs (M87, M49, NGC 1399, NGC 5128, and NGC 4636), it is found that the velocity dispersion of the blue GC system is similar to or larger than that of the red GC system except for M60, and the rotation of the GC system is not negligible. The entire sample of each GC system shows an isotropic velocity ellipsoid except for M60, while the subsamples show diverse velocity ellipsoids. We discuss the implication of these results for the formation models of the GC system in gEs.Comment: 48 pages, 16 figures. To appear in Ap

    Horava-Lifshitz Holography

    Full text link
    We derive the detailed balance condition as a solution to the Hamilton-Jacobi equation in the Horava-Lifshitz gravity. This result leads us to propose the existence of the d-dimensional quantum field theory on the future boundary of the (d+1)-dimensional Horava-Lifshitz gravity from the viewpoint of the holographic renormalization group. We also obtain a Ricci flow equation of the boundary theory as the holographic RG flow, which is the Hamilton equation in the bulk gravity, by tuning parameters in the theory.Comment: 7 page
    • 

    corecore